

Stroke Units

Michael Brainin Professor in Clinical Neurology Danube University Krems Austria WCN Dubai, Oct 2019

Time is brain – Quantified

Estimated pace of neural circuitry loss in typical large vessel, supratentorial acute ischaemic stroke

	Neurons Lost	Synapses Lost	Myelinated Fibres Lost	Accelerated Aging
Per Stroke	1.2 billion	8.3 trillion	7140 km/4470 miles	36 y
Per Hour	120 million	830 billion	714 km/447 miles	3.6 y
Per Minute	1.9 million	14 billion	12 km/7.5 miles	3.1 wk
Per Second	32 000	230 million	200 meters/218 yards	8.7 h

Saver J. Stroke 2006;37:263-266.

If you recognise the signs of **STROKE** act

Facial weakness

Can the person smile? Has their mouth or eye drooped? Arm weakness

Can the person raise both arms?

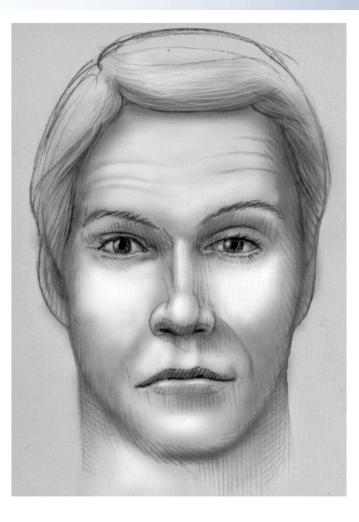
Speech difficulty

Can the person speak clearly and understand what you say? Time to act fast If you recognise

the signs of stroke, seek immediate medical attention.

The signs of **Stroke** are:

- Weakness, numbness or paralysis of the face, arm or leg
- Difficulty speaking or understanding
- Dizziness and loss of balance
- Loss of vision
- Headache, usually severe and abrupt
- Difficulty swallowing


Act FAST – seek immediate medical attention.

For more information call 1800 787 653 or visit www.strokefoundation.com.au.

The National Stroke Foundation acknowledges the support from our valued partners including Bristol-Myers Squibb, Southern Cross Broadcasting, Connex and News Limited and we thank them. Cincinnati Prehospital Stroke Scale Facial droop: have patient smile

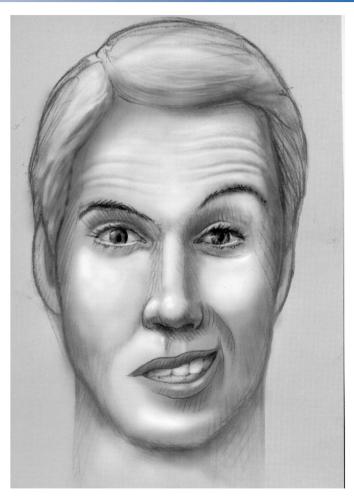


Image Source: NINDS

Arm drift: close eyes & hold out both arms

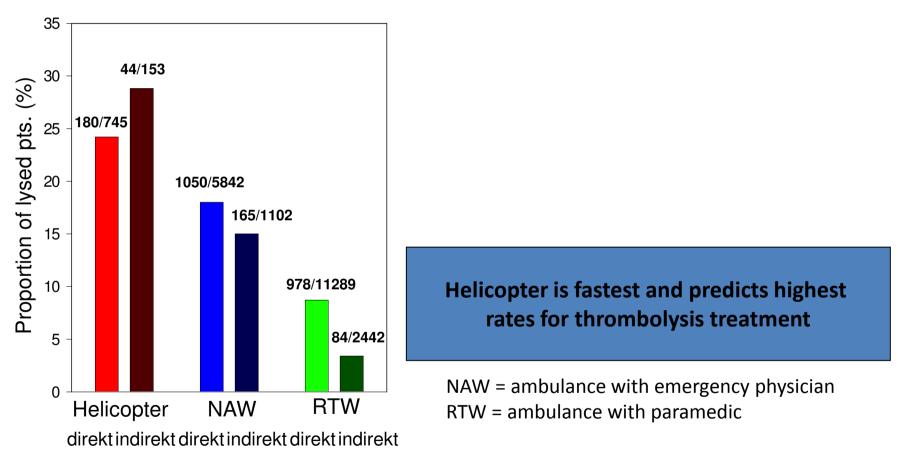


Image Source: NINDS

Helicopter transport of stroke patients and its influence on thrombolysis rates: data from the Austrian Stroke Unit Registry.

n=2.501 lysierte Pat., 2003-2009

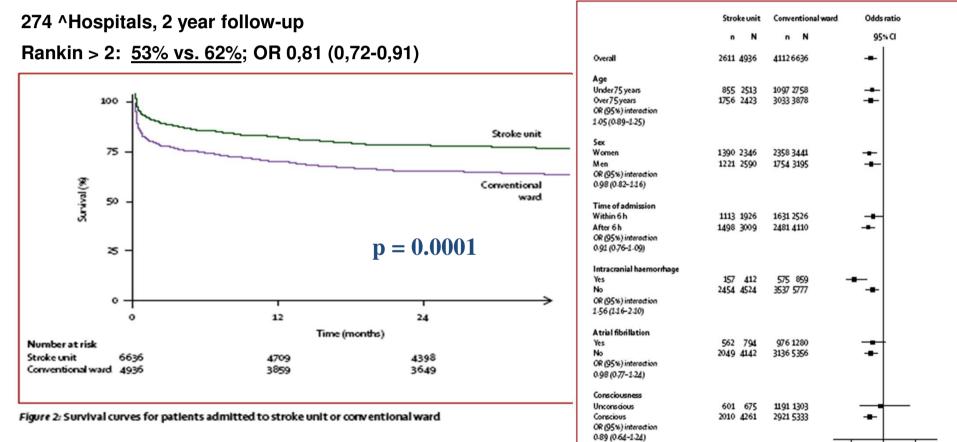
Reiner-Deitemyer V. et al. Stroke 2011;42:1295-300.

NUUA

Interactive Videoconferencing and Teleradiology TEMPIS

Death within 1 year of stroke: stroke unit vs non-stroke unit care

tudy or sub-category log[Odds	of death] (SE)	Odds of death	(95% Cl)	Odds of death (95% CI)
ingle unit					
Davenport (1996) 0.0000	(0.1820)			1.00 [0.70,	1.43]
Jorgensen (1995) -0. 5280	(0.1730)			0.59 [0.42,	0.83]
Koton (2005) -0.3567	(0.4320) -			0.70 [0.30,	1.63]
Krespi (2003) -0.8210	(0.2680) —			0.44 [0.26,	0.74]
Langhorne (2003) -0.6930	(0.3000) —			0.50 [0.28,	0.90]
Olsen (2004) -1.2000	(0.6140) 🔶 🗕			0.30 [0.09,	1.00]
Phillips (2002) -0.0830	(0.1110)	·		0.92 [0.74,	1.14]
Stavem (2002) -0.1050	(0.0660)			0.90 [0.79,	1.02]
Walter (2005) -0.7550	(0.2830) —			0.47 [0.27,	0.82]
Subtotal (95% CI)		• •		0.70 [0.56,	0.86]
est for heterogeneity: Chi ² = 22.68, df = 8 (P	= 0.004), l² = 64.7%				
est for overall effect: Z = 3.33 (P = 0.0009)					
Multiple units					
Bhalla (2004) -0.6930	(0.2610) -			0.50 [0.30,	0.83]
Cadilhac (2004) -0.3150	(0.3860)		_	0.73 [0.34,	1.56]
Candelise (2006) -0.2480	(0.1010)			0.78 [0.64,	0.95]
Glader (2001)-Depend -0.1170	(0.1080)			0.89 [0.72,	1.10]
Glader (2001)-Indep -0.1510	(0.0630)			0.86 [0.76,	0.97]
	(0.0720)			0.76 [0.66,	0.87]
Stegmayr (1999)-Conc -0.1630	(0.0690)			0.85 [0.74,	0.97]
Stegmayr (1999)-Unco -0.1740	(0.0760)			0.84 [0.72,	0.98]
Subtotal (95% Cl)		•		0.82 [0.77,	0.87]
est for heterogeneity: Chi ² = 6.70, df = 7 (P =	= 0.46), l² = 0%	6764			
est for overall effect: Z = 6.32 (P < 0.00001)					
otal (95% Cl)		•		0.79 [0.73,	0.86]
est for heterogeneity: Chi ² = 29.38, df = 16 (P = 0.02), I² = 45.5%				
est for overall effect: Z = 5.51 (P < 0.00001)		.			
	0.2	0.5 1	2 5		
	Favo	urs treatment Fa	vours control		


Seenan, P. et al. Stroke 2007;38:1886-1892

Poor outcome within 1 year of stroke: stroke unit vs non-stroke unit care

tudy or sub-category	log[Odds of poor outcome] (SE)	Odds of poor outcome (95% Cl)	Odds of poor outcome (95% Cl)
ingle unit			
Davenport (1996)	0.1050 (0.1280)		1.11 [0.86, 1.43]
Jorgensen (1995)	-0.6420 (0.1930)		0.53 [0.36, 0.77]
Koton (2005)	-0.5110 (0.3540)		0.60 [0.30, 1.20]
Krespi (2003)	-0.0580 (0.1490)		0.94 [0.70, 1.26]
anghorne (2003)	-0.0950 (0.0650)		0.91 [0.80, 1.03]
Phillips (2002)	-0.0510 (0.0880)	-	0.95 [0.80, 1.13]
Ronning (2001)	-0.4700 (0.4800) -		0.63 [0.24, 1.60]
Walter (2005)	-0.8910 (0.3540)		0.41 [0.20, 0.82]
ubtotal (95% Cl)		•	0.83 [0.70, 0.99]
	17.75, df = 7 (P = 0.01), l² = 60.6%		
est for overall effect: Z = 2.0	07 (P = 0.04)		
ultiple units			
Bhalla (2004)	0.2620 (0.3950)		1.30 [0.60, 2.82]
Cadilhac (2004)	-0.0620 (0.3020)		0.94 [0.52, 1.70]
Candelise (2006)	-0.2110 (0.0600)	-	0.81 [0.72, 0.91]
Daffertshofer (2004)	-0.4600 (0.1650)		0.63 [0.46, 0.87]
Glader (2001)	-0.2360 (0.1800)		0.79 [0.56, 1.12]
Stegmayr (1999)-Conc	-0.0620 (0.0280)	-	0.94 [0.89, 0.99]
Stegmayr (1999)-Unco	-0.0200 (0.0550)	+	0.98 [0.88, 1.09]
ubtotal (95% Cl)		•	0.88 [0.80, 0.98]
est for heterogeneity: Chi ² =	13.13, df = 6 (P = 0.04), l² = 54.3%		
est for overall effect: Z = 2.4	45 (P = 0.01)		
otal (95% Cl)		•	0.87 [0.80, 0.95]
	31.09, df = 14 (P = 0.005), l² = 55.0%	*	
est for overall effect: Z = 3.1			
	0.2	0.5 1 2	5
		vours treatment Favours control	801
		Seena	an, P. et al. Stroke 2007;38

Benefit of Stroke Units

Stroke Unit: 4936 Patients versus conventional ward: 6636 Pat...

Lancet 2007;369:299-305

Figure 3: Effect of stroke unit care on death or disability by patient subgroups Data adjusted for patient characteristics and clustered at the hospital level.

0.5

stroke unit

Favours

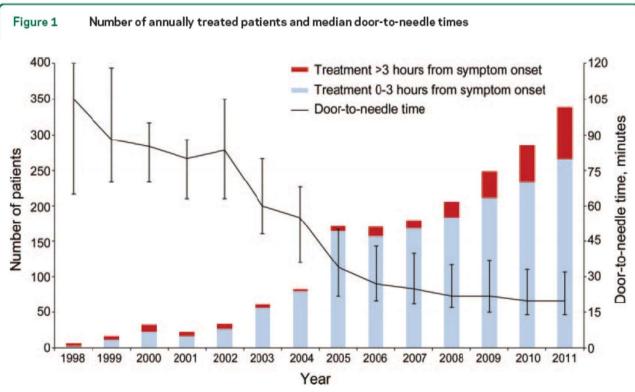
1.5

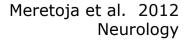
conventional ward

Favours

The main components of stroke unit care: results of a European expert survey. [comprehensive service]

FACILITIES THAT SHOULD BE AVAILABLE


- Stroke trained physician (24/7)
- Diagnostic radiologist on call
- Multidisciplinary team
- Stroke trained nurses
- Physician expert in neurovascular ultrasonology
- Speech therapy start within 2 days
- Physiotherapy start within 2 days
- Brain CT scan 24/7 [MRI and MRA or CT and CTA]
- Extracranial Duplex sonography [Transcranial Dopplersonography]
- Transthoracic echocardiography [Transosephageal echocardiography]
- Automated ECG monitoring at bed-side
- Intravenous rt-PA protocols 24/7 [Endovascular emergency thrombectomy]
- Rehabilitation available (in-house or outside)
- Secondary prevention program
- [Neurosurgery service]


Modif. from : The main components of stroke unit care: results of a European expert survey. Leys et al, EUSI Exec Comm. *Cerebrovasc Dis* 2007;23(5-6):344-52. Epub 2007 Jan 30.

Reducing in-hospital delay to 20 minutes in stroke thrombolysis

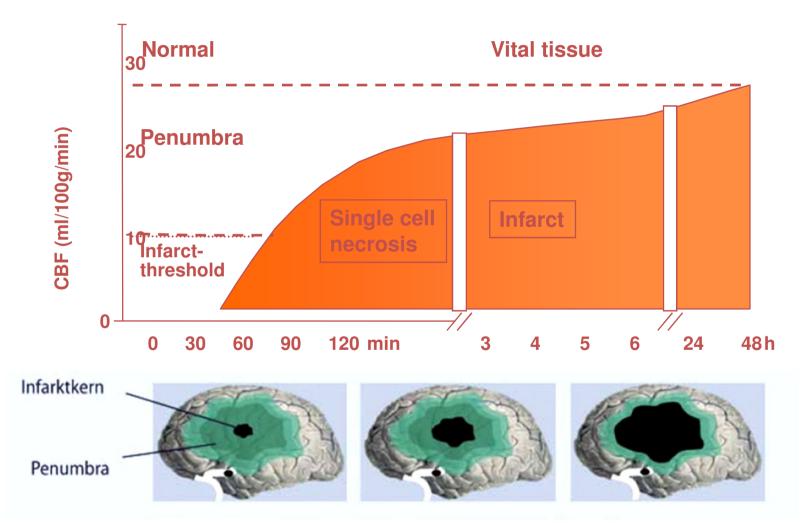
- Thrombolysis registry Helsinki
- 1998-2011
- N=1860

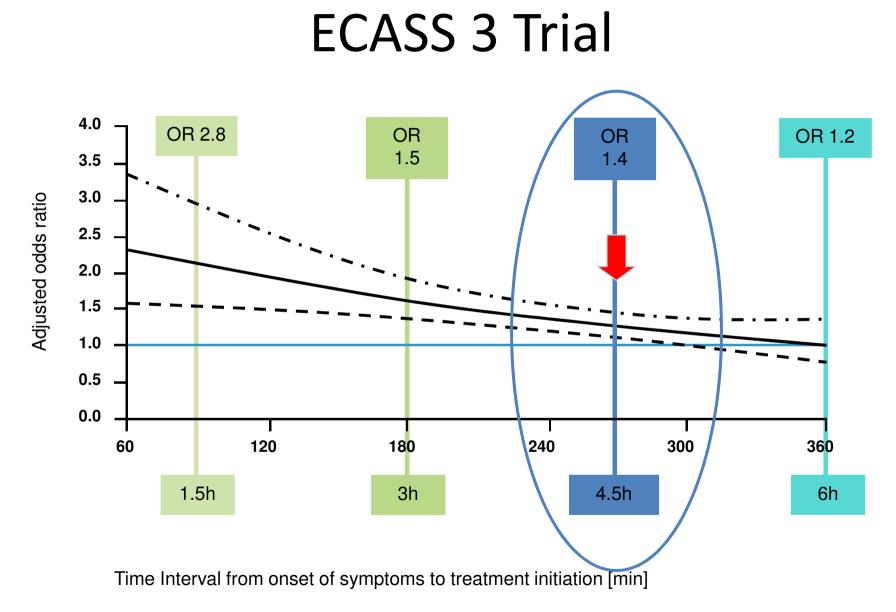
Annual patients, with those treated beyond 3 hours in red (bars, left axis) and median door-to-needle time in minutes with interquartile range (line, right axis). Total n = 1,686. The projected number of patients for 2011 is based on the observed numbers of the first 6 months.

Table 1 Twelve me	Table 1 Twelve measures to reduce treatment delays					
Measure	Description	Year				
EMS involvement	Education of dispatchers and EMS personnel, stroke high-priority dispatch	1998				
Hospital prenotification	EMS contacts stroke physician directly via mobile phone	2001				
Alarm and preorder of tests	Laboratory and CT computer-ordered and alarmed at prenotification	2001				
No-delay CT interpretation	Stroke physician interprets the CT scan, not waiting for formal radiology report	2001				
Premixing of tPA	With highly suspect thrombolysis candidates, tPA premixed prior to patient arrival	2002	Some measures to reduce			
Delivery of tPA on CT table	Bolus administered on CT table	2002	treatment delays			
CT relocated to ER	Patient transfers of several hundred meters, including elevators, were no longer needed	2003	within the hospital			
CT priority and CT transfer	CT emptied prior to patient arrival, and patient transferred straight onto CT table, not ER bed	2004	nospital			
Rapid neurologic evaluation	Patient is examined upon arrival, on CT table	2004				
Preacquisition of history	Statewide electronic patient records and eyewitness interview before/during transportation	2005				
Point-of-care INR	Laboratory personnel draw blood while patient on CT table, and perform instant POC INR	2005				
Reduced imaging	While all patients have a CT, advanced imaging reserved for unclear cases only	2005				

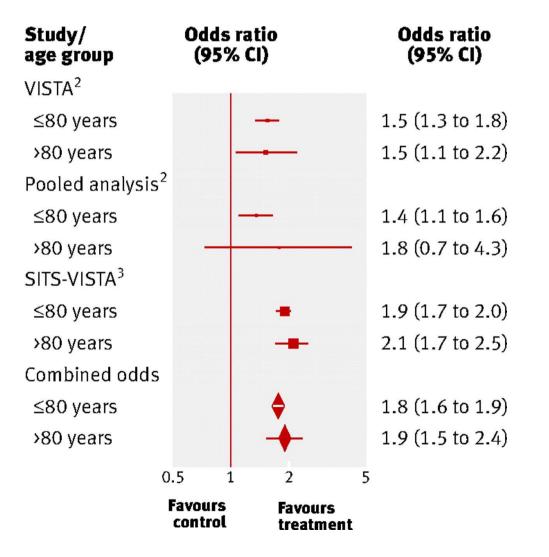
ja 2012 Neurology

Abbreviations: EMS = emergency medical service; ER = emergency room; INR = international normalized ratio; POC = point-of-care; tPA = tissue plasminogen activator.


Premixed prior to patient arrival Delivery of tPA on CT table Bolus administered on CT table 2002 CT relocated to ER Patient transfers of several hundred meters, including elevators, were no longer needed 2003 CT priority and CT transfer CT emptied prior to patient arrival, and patient transfer 2004 Rapid neurologic evaluation Patient is examined upon arrival, on CT table 2004 Preacquisition of history Statewide electronic patient records and eyewitness interview before/during transportation 2005 Point-of-care INR Laboratory personnel draw blood while patient on CT 2005		Table 1 Twelve me		Meretoja 2012 Neurolo	
Hospital prenotification EMS contacts stroke physician directly via mobile 2001 Alarm and preorder of tests Laboratory and CT computer-ordered and alarmed 2001 No-delay CT interpretation Stroke physician interprets the CT scan, not waiting 2001 Premixing of tPA With highly suspect thrombolysis candidates, tPA 2002 Delivery of tPA on CT table Bolus administered on CT table 2003 CT relocated to ER Patient transfers of several hundred meters, including elevators, were no longer needed 2004 Rapid neurologic evaluation Patient is examined upon arrival, on CT table 2004 Preacquisition of history Statewide electronic patient records and eyewitness interview before/during transportation 2005 Point-of-care INR Laboratory personnel draw blood while patient on CT 2005	_	Measure	Description	Year	
prenotificationphoneAlarm and preorder of testsLaboratory and CT computer-ordered and alarmed at prenotification2001No-delay CT interpretationStroke physician interprets the CT scan, not waiting for formal radiology report2001Premixing of tPAWith highly suspect thrombolysis candidates, tPA premixed prior to patient arrival2002Delivery of tPA on CT tableBolus administered on CT table2002CT relocated to ERPatient transfers of several hundred meters, including elevators, were no longer needed2003CT priority and CT transferCT emptied prior to patient arrival, and patient transferred straight onto CT table, not ER bed2004Preacquisition of historyPatient is examined upon arrival, on CT table eyewitness interview before/during transportation2005Point-of-care INRLaboratory personnel draw blood while patient on CT y personnel draw blood while patient on CT y prime table2005		EMS involvement		1998	
of tests at prenotification No-delay CT Stroke physician interprets the CT scan, not waiting 2001 Premixing of tPA With highly suspect thrombolysis candidates, tPA 2002 Delivery of tPA on Bolus administered on CT table 2002 CT relocated to ER Patient transfers of several hundred meters, including elevators, were no longer needed 2003 CT priority and CT transferred straight onto CT table, not ER bed 2004 within the hospital Rapid neurologic evaluation Patient is examined upon arrival, on CT table 2004 Preacquisition of history Statewide electronic patient arrival, on CT table 2005 Point-of-care INR Laboratory personnel draw blood while patient on CT 2005				2001	
interpretation for formal radiology report Premixing of tPA With highly suspect thrombolysis candidates, tPA premixed prior to patient arrival 2002 Delivery of tPA on CT table 2002 CT relocated to ER Patient transfers of several hundred meters, including elevators, were no longer needed 2004 CT priority and CT transfer CT emptied prior to patient arrival, and patient transfers of several hundred meters, including elevators, were no longer needed 2004 Rapid neurologic evaluation Patient is examined upon arrival, on CT table 2004 Preacquisition of history Statewide electronic patient records and eyewitness interview before/during transportation 2005 Point-of-care INR Laboratory personnel draw blood while patient on CT 2005				2001	
Premixed prior to patient arrival Delivery of tPA on CT table Bolus administered on CT table 2002 CT relocated to ER Patient transfers of several hundred meters, including elevators, were no longer needed 2003 CT priority and CT transfer CT emptied prior to patient arrival, and patient transferred straight onto CT table, not ER bed 2004 Rapid neurologic evaluation Patient is examined upon arrival, on CT table 2004 Preacquisition of history Statewide electronic patient records and eyewitness interview before/during transportation 2005 Point-of-care INR Laboratory personnel draw blood while patient on CT 2005				2001	
Delivery of tPA on CT tableBolus administered on CT table2002treatment delayCT relocated to ERPatient transfers of several hundred meters, including elevators, were no longer needed2003treatment delayCT priority and CT transferCT emptied prior to patient arrival, and patient transferred straight onto CT table, not ER bed2004within the hospitalRapid neurologic evaluationPatient is examined upon arrival, on CT table20042004Preacquisition of historyStatewide electronic patient records and eyewitness interview before/during transportation2005Point-of-care INRLaboratory personnel draw blood while patient on CT2005		Premixing of tPA		2002	Some measures
Image: CT priority and CT transfer CT emptied prior to patient arrival, and patient transferred straight onto CT table, not ER bed 2004 Rapid neurologic evaluation Patient is examined upon arrival, on CT table 2004 Preacquisition of history Statewide electronic patient records and eyewitness interview before/during transportation 2005 Point-of-care INR Laboratory personnel draw blood while patient on CT 2005			Bolus administered on CT table	2002	treatment delays
CT priority and CT transfer CT emptied prior to patient arrival, and patient transferred straight onto CT table, not ER bed 2004 Rapid neurologic evaluation Patient is examined upon arrival, on CT table 2004 Preacquisition of history Statewide electronic patient records and eyewitness interview before/during transportation 2005 Point-of-care INR Laboratory personnel draw blood while patient on CT 2005		CT relocated to ER		2003	
evaluation Preacquisition of history Statewide electronic patient records and eyewitness interview before/during transportation 2005 Point-of-care INR Laboratory personnel draw blood while patient on CT 2005		CT priority and CT transfer		2004	nospital
history eyewitness interview before/during transportation Point-of-care INR Laboratory personnel draw blood while patient on CT 2005			Patient is examined upon arrival, on CT table	2004	
				2005	
table, and perforministance of mitt		Point-of-care INR	Laboratory personnel draw blood while patient on CT table, and perform instant POC INR	2005	
Reduced imagingWhile all patients have a CT, advanced imaging2005reserved for unclear cases only		Reduced imaging		2005	


a 2012 Neurology

Abbreviations: EMS = emergency medical service; ER = emergency room; INR = international normalized ratio; POC = point-of-care; tPA = tissue plasminogen activator.


Diagnosis Therapy Complications Mobilisation

Penumbra and Treatment Options

Age >80 y does not appear to influence response to alteplase

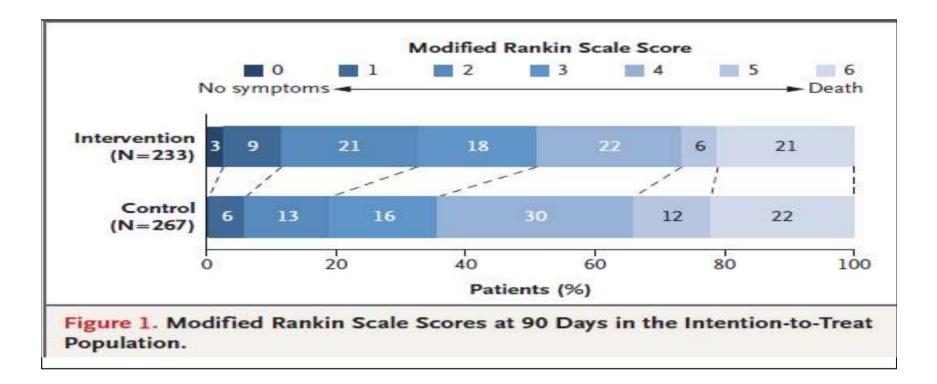
BMJ 2011; 342:d312 doi: 10.1136/bmj.d312

Effect of age: <80 vs. > 80 years and time: <3 vs. 3-6 hrs

Subgroup	No. trials		o. patients)		Odds Ratio (95% CI)
		Thrombolysis	Control	1	· · · · ·
Treated up to 6 hours					
\leq 80 years	10	1372 / 2612	1237 / 2562	-=-	1.17 (1.05 - 1.31)
> 80 years	3	237 / 870	197 / 841	⊢ ∎	1.22 (0.98 - 1.52)
All trials	10	1 609 / 3482	1434 / 3403	\Diamond	1·18 (1·07 - 1·31) p=0·0008

The new endovascular thrombectomy stroke trials

 October 2014: *MR CLEAN* is presented at the WSC in Istanbul and published early 2015



A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke

O.A. Berkhemer, P.S.S. Fransen, D. Beumer, L.A. van den Berg, H.F. Lingsma, A.J. Yoo, W.J. Schonewille, J.A. Vos, P.J. Nederkoorn, M.J.H. Wermer, M.A.A. van Walderveen, J. Staals, J. Hofmeijer, J.A. van Oostayen,
G.J. Lycklama à Nijeholt, J. Boiten, P.A. Brouwer, B.J. Emmer, S.F. de Bruijn, L.C. van Dijk, L.J. Kappelle, R.H. Lo,
E.J. van Dijk, J. de Vries, P.L.M. de Kort, W.J.J. van Rooij, J.S.P. van den Berg, B.A.A.M. van Hasselt, L.A.M. Aerden,
R.J. Dallinga, M.C. Visser, J.C.J. Bot, P.C. Vroomen, O. Eshghi, T.H.C.M.L. Schreuder, R.J.J. Heijboer, K. Keizer,
A.V. Tielbeek, H.M. den Hertog, D.G. Gerrits, R.M. van den Berg-Vos, G.B. Karas, E.W. Steyerberg, H.Z. Flach,
H.A. Marquering, M.E.S. Sprengers, S.F.M. Jenniskens, L.F.M. Beenen, R. van den Berg, P.J. Koudstaal,
W.H. van Zwam, Y.B.W.E.M. Roos, A. van der Lugt, R.J. van Oostenbrugge, C.B.L.M. Majoie, and D.W.J. Dippel,

Berkhemer OA et al. NEJM 2015; 372:11-20

MR CLEAN

Berkhemer OA N Engl J Med. 2015;372:11-20.

HERMES Metaanalysis

Articles

Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials

Mayank Goyal, Bijoy K Menon, Wim H van Zwam, Diederik W J Dippel, Peter J Mitchell, Andrew M Demchuk, Antoni Dávalos, Charles B L M Majoie, Aad van der Lugt, Maria A de Miquel, Geoffrey A Donnan, Yvo B W E M Roos, Alain Bonafe, Reza Jahan, Hans-Christoph Diener, Lucie A van den Berg, Elad I Levy, Olvert A Berkhemer, Vitor M Pereira, Jeremy Rempel, Mònica Millán, Stephen M Davis, Daniel Roy, John Thornton, Luis San Román, Marc Ribó, Debbie Beumer, Bruce Stouch, Scott Brown, Bruce C V Campbell, Robert J van Oostenbrugge, Jeffrey L Saver, Michael D Hill, Tudor G Jovin, for the HERMES collaborators

Lancet 2016; 387: 1723-31

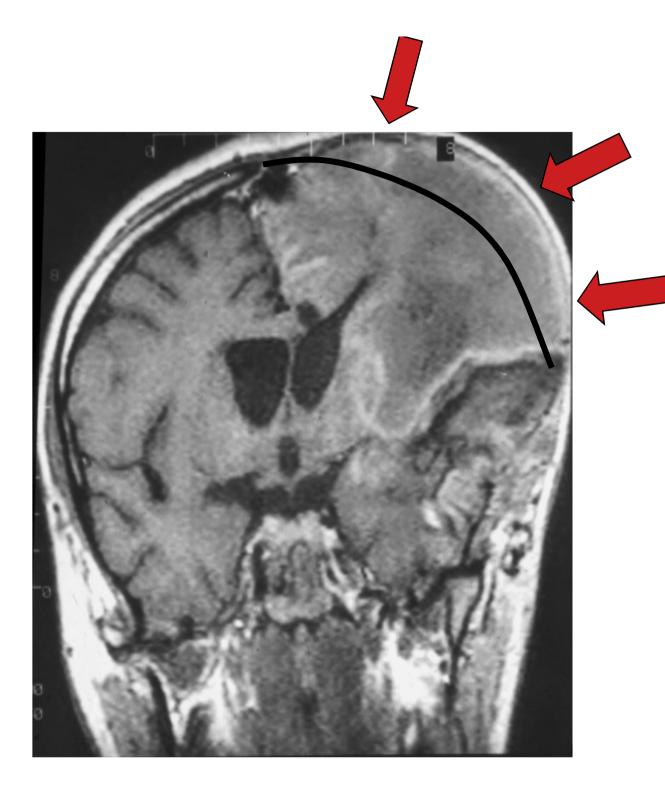
	Intervention population	Control population
	(n=634)	(n=653)
Demographic characteristics		
Median age (years)	68 (57–77)	68 (59–76)*
Men	330 (52%)	352 (54%)
Women	304 (48%)	301 (46%)
Past medical history		
Hypertension	352 (56%)	388 (59%)
Diabetes mellitus	82 (13%)	88 (13%)
Atrial fibrillation	209 (33%)	215 (33%)
Smoking (recent or current)	194 (31%)	210 (32%)
Clinical characteristics		
Baseline NIHSS score	17 (14–20))†	17 (13–21)‡
Baseline blood glucose (mmol/L)	6.6 (5.9–7.8)§	6·7 (5·9–7·8)¶
Imaging characteristics		
ASPECTS on baseline CT	9 (7–10)§	9 (8–10)¶
Intracranial occlusion location		
Internal carotid artery	133 (21%)	144 (22%)
M1 segment middle cerebral artery	439 (69%)	452 (69%)
M2 segment middle cerebral artery	51 (8%)	44 (7%)
Other	11 (2%)	13 (2%)
Treatment details and process times		
Treatment with intravenous alteplase	526 (83%)	569 (87%)
Treatment with intravenous alteplase documented within 180 min	442 (70%)	462 (71%)
Process times (min)		
Onset to randomisation	195.5 (142–260)	196 (142–270)*
Onset to intravenous alteplase	100 (75–133)**	100 (74–140)††
Onset to reperfusion	285 (210-362)	NA

Data are median (IQR), n (%), or mean (SD). NIHSS=National Institutes of Health Stroke Scale. ASPECTS=Alberta Stroke Program Early CT Score. *n=650. †n=631. ‡n=648. §n=620. ¶n=644. ||n=632. **n=598. ††n=618.

Table 1: Baseline characteristics in the pooled data

HERMES Results

	Intervention population	Control population	Risk difference (%)	Rate ratio (95% CI)	Odds ratio (95% CI)
mRS score reduction (shift analysis; primary outcome)*				(** .	2·26* (1·67–3·06); p<0·0001
mRS score 0–1 at 90 days	26·9% (170/633)	12·9% (83/645)	14.0	2·00 (1·54–2·60); p<0·0001	2·49 (1·84–3·35); p<0·0001
mRS score 0–2 at 90 days	46·0% (291/633)	26·5% (171/645)	19.5	1·7 (1·41–2·05); p<0·0001	2·35 (1·85–2·98); p<0·0001

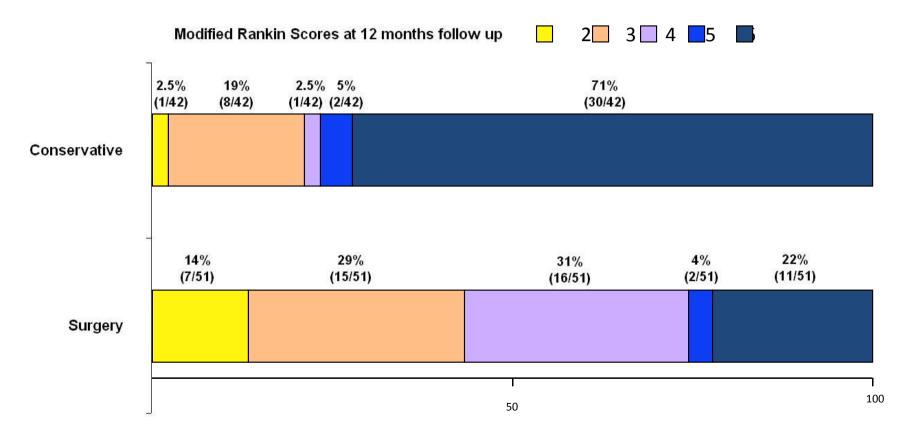

With or without rtPA

HERMES Safety

	Intervention population	Control population	Risk difference (%)	Rate ratio (95% CI)	Odds ratio (95% CI)
Symptomatic intracranial haemorrhage	4·4% (28/634)	4·3% (28/653)	0.1	1.06 (0.63–1.80); p=0.82	1·07 (0·62–1·83); p=0·81
Parenchymal haematoma type 2	5.1% (32/629)	5·3% (34/641)	-0.2	0·99 (0·61–1·61); p=0·97	0·99 (0·60–1·63); p=0·97
Mortality	15·3% (97/633)	18·9% (122/646)	-3.6	0·82 (0·63–1·07); p=0·15	0·77 (0·54–1·10); p=0·16

	n		cOR (95% CI)
Age (years) (p _{inte}	eraction = 0.07)		
18-49	158		1.36 (0.75-2.46)
50-59	218		2.85 (1.72-4.72)
60-69	333		2.58 (1.49-4.48)
70-79	371		2.41 (1.55-3.74)
18-79	1080		2.44 (1.70-3.50)
≥80	198		3.68 (1.95-6.92)
ASPECTS (pinteract			
0-5	121		1.24 (0.62-2.49)
6-8	475		2.34 (1.68-3.26)
9-10	682		2.66 (1.61-4.40)
Alteplase (pinterad	$t_{ion} = 0.43$		
Yes	1090		2.45 (1.68-3.57)
No	188		2.43 (1.30-4.55)
Stroke location	$(p_{interaction} = 0.17)$		
ICA	274		3.96 (1.65-9.48)
M1	887		2.29 (1.73-3.04)
M2	94		1.28 (0.51-3.21)
NIHSS score (pin	$t_{\text{teraction}} = 0.45)$		agadeedada 🔹 205 basa. 🖣
≤10	177		1.67 (0.80-3.50)
11-15	307	· · · · · · · · · · · · · · · · · · ·	2.68 (1.39-5.19)
16-20	473	x	2.81 (1.80-4.38)
≥21	321		2.52 (1.40-4.54)
Onset to randor	nisation (p _{interaction} :	=0.10)	
≤300 min	1070	· · · ·	2.66 (1.83-3.87)
>300 min	208		1.76 (1.05-2.97)
Sex $(p_{interaction} = 0)$	·34)		
Male	676		2.54 (1.92-3.36)
Female	601		2.38 (1.46-3.88)
Tandem lesion ($p_{interaction} = 0.17)$		accentences in a significant of the second sec
Yes	122	· · · · · · · · · · · · · · · · · · ·	- 2.95 (1.38-6.32)
No	1132		2.35 (1.68-3.28)
Total	1278		2.49 (1.76-3.53)
		0.5 1 2	10
		Favours control Favours interv	ention

Figure 2: Forest plot showing adjusted treatment effect for mRS at 90 days in prespecified subgroups with p values for heterogeneity across subgroups



Additional volume

after MCA infarction and hemicraniectomy

Courtesy, Prof. Hacke

Results: Distribution of Outcome

p for mRS distribution (shift analysis) <.001

Diagnosis Therapy Complications **Mobilisation**

Medical complications after stroke

Chest infection	Pulmonary embolism
Urinary tract infection	Myocardial infarction/angina
Fever	Cardiac heart failure
Pain	Cardiac arrest
Pressure sores	GI bleed
Falls	Urinary incontinence
Depression	Cognitive decline
Deep vein thrombosis	

Complications following acute stroke within the first week

Neurological complications:

- increased intracranial pressure (7.6%)
- recurrent cerebral ischemia (5.1%)

Medical complications

- fever >38 degrees C (13.2%),
- severe arterial hypertension (7.5%)
- pneumonia (7.4%)

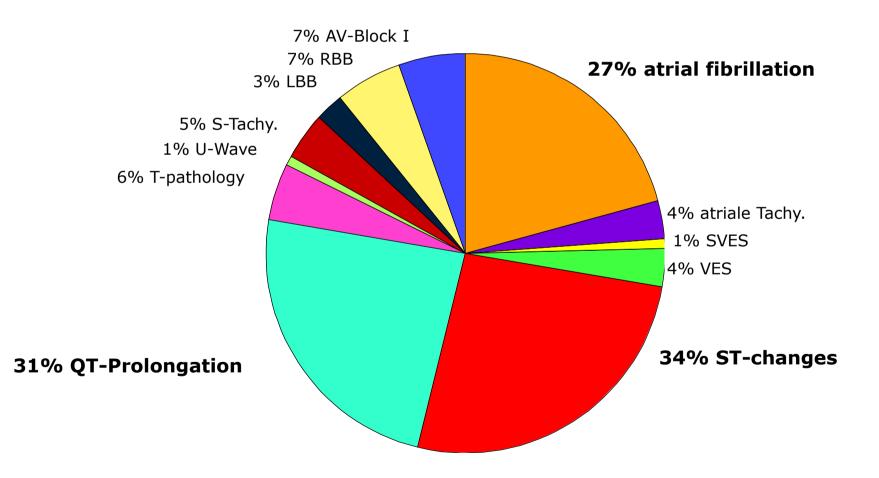
Stroke unit care

"Stroke patients who receive organised inpatient care in a stroke unit are more likely to be alive, independent, and living at home one year after the stroke. The benefits were most apparent in units based in a discrete ward. No systematic increase was observed in the length of inpatient stay."

Acute stroke unit

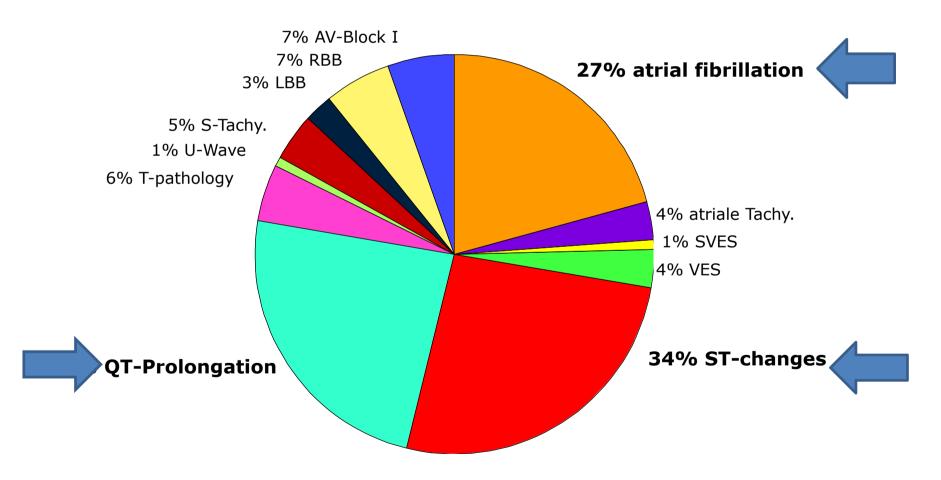
Emergency Diagnostic Tests: assess risk of early, recurrent stroke

- Differentiate between different types of stroke
 - Assess the underlying cause of brain ischaemia
 - Assess prognosis
- Provide a basis for physiological monitoring of the stroke patient
- Identify concurrent diseases or complications associated with stroke
- Rule out other brain diseases


Emergency Diagnostic Tests

- Electrocardiogram (ECG)
 - Cardiac abnormalities are common in acute stroke patients¹
 - Arrhythmias may induce stroke, stroke may cause arrhythmias
 - Holter monitoring is superior to routine ECG for the detection of atrial fibrillation (AF)²

1: Christensen H et al. Neurol Sci (2005) 234:99 –103 2: Gunalp M et al. Adv Ther (2006) 23:854-60



ECG changes in acute stroke: 69% prevalence

ECG changes in acute stroke: 69% prevalence

Atrial fibrillation (AF) - Etiology

- Hypertension
- Coronary heart disease
- Rheumatic
- Post myocarditis
- Valvular
- Lone AF
- AF with extracardiac causes
 - Hyperthyroidism
 - Respiratory tract infection
 - Reflux esophagitis

Paroxysmal AF (PAF)

- Detected in stroke patients by
 - Holter monitoring during 24-72 hours in 4.6%
 - 4-7 days loop-recording in additional 6-8%
 - 7 days event-recording in 14%
 - Holter and serial ECGs within
 3 days in 14%
- 25% detection rate by combining different monitoring methods.[Sposato 2015]

Developments in AF detection

QT prolongation

- Potentially leading to torsades des pointes and ventricular fibrillation
- A variety of drugs may induce QT prolongation.
 - Psychotropics
 - Antibiotics
 - Antiallergics
 - Herbal drugs (ephedra, St. John's worth).....
- Actual information in <u>www.torsades.org</u>

(Stöllberger C, Int Clin Psychopharmacol 2005;20:243-51.)

Risk factors for QT-prolongation

- Increased age
- Female gender
- Elektrolyte-disturbances
 - Hypokalaemia,
 - Hypomagnesaemia
 - Hypocalzaemia
- Bradycardia
- Cardiovascular diseases
 - Cerebrovascular diseases,
 - Diabetes mellitus,
 - Coronary heart disease,
 - Heart failure,
 - Arterial hypertension
- Hypoglycaemia, hypothermia, hypothyroidism, obesity (*Tatschl C, Cerebrovasc Dis 2006;21:47-53.*)

QT-prolongation: Therapy

- Patient should be monitored!
- Heart rate should be >60/min
 - Consider pacing when <60/min</p>
- Assess serum potassium level
 - Target value: >4.0 mmol/l
- Assess comedication
- Therapeutic option: Magnesium iv.

Emergency Diagnostic Tests

- Echocardiography (TTE / TOE)
 - Echocardiography can detect many potential causes of stroke¹
 - It is particularly required in patients with history of cardiac disease, ECG pathologies, suspected source of embolism, suspected aortic disease, suspected paradoxical embolism
 - Transoesophageal echocardiography (TOE) might be superior to transthoracic echocardiography (TTE) for the detection of potential cardiac sources of embolism²

Atrial fibrillation - LAAT

Courtesy Claudia Stoellberger MD

Aortic arch atheroma

exulcerated plaque

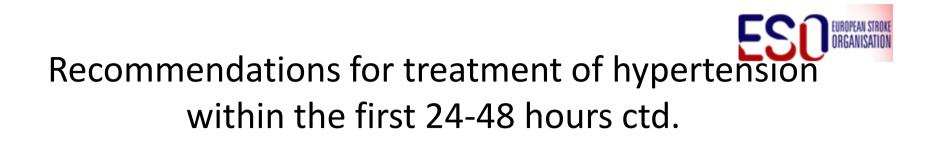
complex plaque >4mm

Courtesy Claudia Stoellberger MD

Takotsubo Syndrome: stress following acute stroke

A characteristic cardiomyopathy with left ventricular apical ballooning can occur as a complication of haemorrhagic or ischaemic strokes.




Figure 1: Cardiac MRI of a patient with takotsubo syndrome (stress cardiomyopathy) (A) Steady-state free precession MRI shows the four chambers of the heart at the end of diastole. (B) Cardiac chambers at the end of systole are shown; the arrows point to the hinge point where the basal segment contracts, but the apical to mid-segments do not contract—a characteristic finding in takotsubo syndrome. (C) LGE phase of fat-saturated inversion recovery gradient echo sequence does not show any enhancement to indicate cardiac scarring. LA=left atrium. LGE=late gadolinium enhancement. LV=left ventricle. RA=right atrium. RV=right ventricle.

Incidence of takotsubo syndrome was 1.2% in consecutive patients within the first 2 weeks after an ischaemic stroke Risk population: women, with strokes involving the insular region or with extensive brainstem.

Recommendations for treatment of hypertension within the first 24-48 hours ctd.

- In patients without previous antihypertensive drugs, and
- SBP <180 mm Hg, and
- DBP <100 mm Hg
- no antihypertensive therapy,
- unless thrombolysis is indicated.

- In patients with previous oral antihypertensive therapy
- antihypertensive therapy should be given
- to avoid rebound hypertension.
- Aim is to maintain a
- SBP <180
- DBP <100 mm Hg.

(Klijn CJ, Lancet Neurol 2003;2:698-701)

Emergency Diagnostic Tests

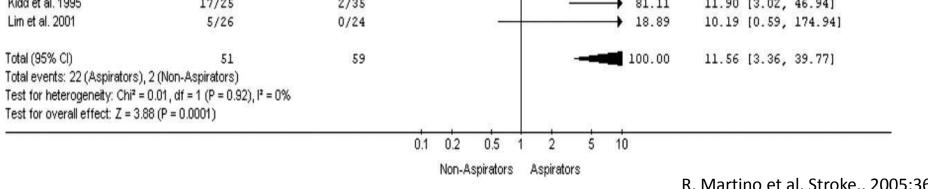
- Laboratory tests
 - Haematology (RBC, WBC, platelet count)
 - Basic clotting parameters
 - Electrolytes
 - Renal and hepatic chemistry
 - Blood Glucose
 - CRP, sedimentation rate

Hyperthermia and stroke

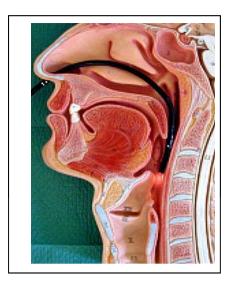
- Hyperthermia is associated with a poor clinical outcome.
- The later the hyperthermia occurs within the first week, the worse the prognosis.
- Severity of stroke and inflammation are important determinants of hyperthermia after ischemic stroke.

Saini M, Saqqur M, Kamruzzaman A, Lees KR, Shuaib A; on behalf of the VISTA Investigators. Effect of hyperthermia on prognosis after scute ischemic stroke. <u>Stroke</u>. 2009 Jul 30. [Epub ahead of print] PMID: 19644066

Pneumonia following stroke


Normal swallowing vs. aspiration

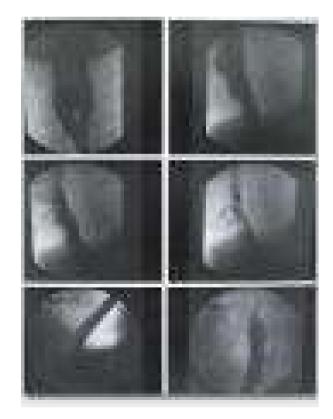
Pneumonia frequency in stroke patients with aspiration and no aspiration


Study or sub-category	Dysphagic n/N	Non-Dysphagic n/N	RR (random) 95% Cl	VVeight %	RR (random) 95% Cl
Chua et al. 1996	6/21	2/32		7.94	4.57 [1.02, 20.54]
De Pippo et al. 1994	10/82	1/57		→ 4.40	6.95 [0.92, 52.80]
Gordon et al. 1987	7/37	4/50	°	13.29	2.36 [0.75, 7.49]
Gottlieb et al. 1996	9/50	9/130		- 22.96	2.60 [1.10, 6.17]
Mann et al. 1999	24/82	2/46	2.0	→ 9.16	6.73 [1.67, 27.21]
Smithard et al. 1996	20/60	9/57		34.05	2.11 [1.05, 4.24]
Sala et al. 1998	11/68	2/119	(<u>14</u>	→ 8.21	9.63 [2.20, 42.15]
Total (95% Cl)	400	491	-	· 100.00	3.17 [2.07, 4.87]
Total events: 87 (Dysphagic) Test for heterogeneity: Chi² = Test for overall effect: Z = 5.	6.23, df = 6 (P = 0.40), l ² = 3	3.7%			
Total events: 87 (Dysphagic) Test for heterogeneity: Chi ^z =	6.23, df = 6 (P = 0.40), l ² = 3	0.1		 5 10	
Total events: 87 (Dysphagic) Test for heterogeneity: Chi ² = Test for overall effect: Z = 5.	6.23, df = 6 (P = 0.40), l ² = 3 29 (P < 0.00001)	o.1 stroke patients wit	Non-Dysphagic Dysphagic	5 10	
Total events: 87 (Dysphagic) Test for heterogeneity: Chi ² = Test for overall effect: Z = 5.	6.23, df = 6 (P = 0.40), I ^z = 3 29 (P < 0.00001) nia frequency in	o.1 stroke patients wit phagia.	Non-Dysphagic Dysphagic h dysphagia and		RR (random)
Total events: 87 (Dysphagic) Test for heterogeneity: Chi ² = Test for overall effect: Z = 5. Jure 2. Pneumor	6.23, df = 6 (P = 0.40), I ^z = 3 29 (P < 0.00001) nia frequency in no dysj	o.1 stroke patients wit	Non-Dysphagic Dysphagic	5 10 VVeight %	RR (random) 95% Cl
Total events: 87 (Dysphagic) Test for heterogeneity: Chi ² = Test for overall effect: Z = 5. J ure 2. Pneumor Study	6.23, df = 6 (P = 0.40), I ^z = 3 29 (P < 0.00001) nia frequency in no dysj Aspirators	0.1 stroke patients wit phagia. Non-Aspirators	Non-Dysphagic Dysphagic h dysphagia and RR (random)	Weight	

R. Martino et al. Stroke.. 2005;36: 63

Management of Complications

- Systematic swallowing assessment is recommended
- Early commencement of nasogastric (NG) feeding (within 48 hours) is recommended in stroke patients with impaired swallowing
- Percutaneous enteral gastrostomy (PEG) feeding should not be considered in stroke patients in the first 2 weeks



•DIAGNOSIS

- •Bedside Screening
- •VFS (Videofluoroskopy)

•FEES (Fiberoptic endoscopic evaluation of swallowing)

GUSS (Gugging Swallowing Screen)¹

2. Direct Swallowing Test (Material: Aqua bi, flat teaspoon, food thickener, bread)

In the following order:	1 →	2 →	3 →	
	SEMISOLID*	LIQUID**	SOLID ***	
DEGLUTITION:				
 Swallowing not possible 	0 🗆	0 🗆	0 🗆	
 Swallowing delayed (> 2 sec.) (Solid textures > 10 sec.) 	1 🗆	1 🗆	1 🗆	
 Swallowing successful 	2 🗆	2 🗆	2 🗆	
COUGH (involuntary): (before, during or after swallowing – until 3 minutes later)				
• Yes	0 🗆	0 🗆	0 🗆	
• No	1 🗆	1 🗆	1 🗆	
DROOLING:				
• Yes	0 🗆	0 🗆	0 🗆	
• No	1 🗆	1 🗆	1 🗆	
VOICE CHANGE: (listen tot he voice before and after swalloing- patient should speak "Oh")				
• Yes	0 🗆	0 🗆	0 🗆	
• No	1 🗆	10	1 🗆	
SUM:	(5)	(5)	(5)	
	1 – 4 = Investigate further ² 5 = Continue "LIQUID"	1 – 4 = Investigate further ² 5 = Continue "SOLID"	1 – 4 = Investigate further ² 5 = NORMAL	

Pulmonary embolism

Data from a pooled analysis of 16 trials involving 23 043 patients showed that high-dose UFH (≥15 000 IU per day) reduced the incidence of pulmonary embolism but led to an increased risk of intracranial haemorrhages , whereas low-dose UFH (<15 000 IU) decreased the risk of DVTs but had no effect on pulmonary embolism or the risk of haemorrhage .

Table 2 Relative risk of deep-vein thrombosis, pulmonary embolism, intracranial hemorrhage and extracranial hemorrhage associated with prophylaxis of low-dose or high-dose unfractionated heparin or low-molecular-weight heparin compared to no prophylaxis after acute ischemic stroke

	DVT		PE K		ICH	ЮН		ECH	
	OR	95% CI	OR	95% CI	OR	95% CI	OR	95% CI	
Low-dose UFH	0.17	0.11-0.26	0.83	0.53-1.31	1.67	0.97-2.87	1.58	0.89-2.81	
High-dose UFH	No stud	ties	0.49	0.29-0.83	3.86	2.41-6.19	4.74	2.88-7.78	
Low-dose LMWH	0.34	0.19-0.59	0.36	0.15-0.87	1.39	0.53-3.67	1.44	0.13-16	
High-dose LMWH	0.07	0.02-0.29	0.44	0.18-1.11	2.01	1.02-3.96	1.78	0.99-3.17	

DVT =deep-vein thrombosis; PE = pulmonary embolism; ICH = intracranial hemorrhage; ECH = extracranial hemorrhage; OR = odds ratio; CI = confidence interval.

ESO Guidelines for prophylaxis for venous thromboembolism im immobile patients with acute ischemic stroke

 Intermittent compression stockings in immobile patients

(QoE: Moderate, Strength of Recom: strong, no effect on major outcomes including symptomatic DVT and PE, but reduction of overall mortality)

 Prophylactic anticoagulation with low molecular weight heparin or heparinoid preferred over unfractionated heparin (5000 Units 2-3 times daily)

(QoE: moderate SoR: weak, but LMWH have higher risk of extrcranial bleeding, higher drug costs and risk in elderly pts with poor renal function)

• Early mobilization, avoidance of dehydration, aspirin

Medical complications after stroke

Chest infection	Prevent aspiration
Urinary tract infection	Mobilize early
Fever	Prevent aspiration
Pain	Mobilize early
Pressure sores	Mobilize early
Falls	Physiotherapy
Depression	Early recognition and Tx
Deep vein thrombosis	Compression stockings

Medical complications after stroke

Pulmonary embolism	Heparin and Mobilization
Myocardial	Assess cardiac risks
infarction/angina	Reduce autonomic stress
Cardiac heart failure	reaction
Cardiac arrest	Assess cardiac function
GI bleed	Assess bleeding risk
Urinary incontinence	Prevent stress, look for risks
	Train natural functions,
	specialist assessment

Diagnosis Therapy Complications **Mobilisation**

Advances in Neurorehabilitation

Promising areas:

- Drug therapy for motor recovery
- Body-weight support treadmill training
- Robotics
- Virtual reality
- Transcranial magnetic stimulation
- Early mobilization

Simplified as a process, stroke rehabilitation involves

- assessment,
- •goal-setting,
- intervention,
- reassessment

Langhorne P, Bernhardt J, Kwakkel G *Stroke rehabilitation. Lancet.* 2011;377:1693–1702.

Rehabilitation on a stroke unit

Stroke rehabilitation practice guidelines, update 2015 (Int J Stroke 2016)

Assessment components should include dysphagia, mood and cognition, mobility, functional assessment, temperature, nutrition, bowel and bladder function, skin breakdown, discharge planning, prevention therapies, venous thromboembolism prophylaxis (Evidence Level B).

Rehabilitation on a stroke unit

Stroke rehabilitation practice guidelines, update 2015 (Int J Stroke 2016)

Mobilization is defined as "the process of getting a patient to move in the bed, sit up, stand, and eventually walk."

i. All patients admitted to hospital with acute stroke should be assessed by rehabilitation professionals (Evidence Level A), ideally within the first 48 h of admission (Evidence Level C).

ii. Frequent, out-of-bed activity in the very early time frame (within 24 h of stroke onset) is not recommended (Evidence Level B). Mobilization may be reasonable for some patients with acute stroke in the very early time frame and clinical judgment should be used (Evidence Level C).

Rehabilitation on a stroke unit

Stroke rehabilitation practice guidelines, update 2015 (Int J Stroke 2016)

iii. All patients admitted to hospital with acute stroke should start to be mobilized early (between 24 h and 48 h of stroke onset) if there are no contraindications (Evidence Level B).
Contraindications to early mobilization include, but are not restricted to, patients who have had an arterial puncture for an interventional procedure, unstable medical conditions, low oxygen saturation and lower limb fracture or injury.