Prognosis of Traumatic Brain Injury

G. Bryan Young, MD, FRCPC
University of Western Ontario
London, Ontario, Canada
Bryan.Young@lhsc.on.ca

Disclosures: none; no conflicts of interest.
Objectives

• To review the epidemiology, complexity and heterogeneity of TBI
• To develop a prognostic approach that is evidence-based.
• To review clinical predictors and the role of ancillary tests in arriving at a prognosis.
Traumatic Brain Injury (TBI)

• An insult to the brain from the application of an external force.
• In USA 40% of deaths from injury are from TBI = 52,000 deaths/year
• 200,000 hospitalizations/year
TBI: Facts

- Major global health and economic problem; major cause of disability in young adults; males >> females.
- Incidence of TBI in elderly is increasing.
- TBI is highly heterogenous in mechanisms and pathology, making prognostic studies problematic.
- TBI produces primary and secondary injuries.
- New therapies for preventing secondary injury not found to be generally effective.
- Withdrawal of care in ICU is often premature: an evidence-based approach is needed.
Variability Among Trauma Centres for Mortality after WLST for Severe TBI

• Turgeon et al. CMAJ 2011.

• Mortality varied 10.8%- 44.2% among centres.
• 70% of mortality occurred after WLST.
• Adjusting for risk factors, the institution effect was significant.
Figure 2: Adjusted odds ratios for hospital mortality following withdrawal of life-sustaining therapy by centre. Odds ratios were adjusted for sex, age, pupillary reactivity and patients’ scores on the Glasgow coma scale. An odds ratio greater than 1.00 is associated with greater odds of death; an odds ratio of less than 1.00 is associated with lower odds of death. Error bars indicate 95% confidence intervals.
Individual Factors of Prognostic Value

• Age
• Pupillary reactivity
• GCS
• CT
TBI: age and mortality
CRASH Collaborators BMJ
TBI: GCS and Mortality
Crash Collaborators, BMJ
Pupils and Odds of Mortality or Severe Disability at 6 Months (CRASH)

<table>
<thead>
<tr>
<th>Pupillary Reactivity</th>
<th>High Income Countries</th>
<th>Low Income Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Both</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>2.43</td>
<td>2.01</td>
</tr>
<tr>
<td>None</td>
<td>3.28</td>
<td>4.54</td>
</tr>
</tbody>
</table>
CT findings and Odds of Mortality or Severe Disability at 6 months (CRASH)

<table>
<thead>
<tr>
<th>CT Finding</th>
<th>High Income Countries</th>
<th>Low Income Countries</th>
</tr>
</thead>
<tbody>
<tr>
<td>Petechial hemorrhages</td>
<td>1.21</td>
<td>1.49</td>
</tr>
<tr>
<td>Obliteration 3rd ventricle</td>
<td>2.21</td>
<td>1.53</td>
</tr>
<tr>
<td>SAH</td>
<td>1.62</td>
<td>1.20</td>
</tr>
<tr>
<td>Midline shift</td>
<td>1.93</td>
<td>1.68</td>
</tr>
<tr>
<td>Nonevacuated hematoma</td>
<td>1.72</td>
<td>1.68</td>
</tr>
</tbody>
</table>
External Validation of 10 pts
(thin line = model; thick line actual)
Illustrative case

• 72-year-old man fell down a flight of stairs
• Comatose GCS of 4, extensor posturing
• One pupil reacting, other fixed
• No hypoxia,
• Initially hypotensive (BP 80/40)
• Evacuated acute subdural hematoma
• Glucose 20 mmol/L
• Hemoglobin 12 g/L
Case 1 IMPACT score

Prognostic Results:

Predicted probability of 6 month mortality: Core model: 78%
Predicted probability of 6 month unfavourable outcome: Core model: 94%
Illustrative Case 2

• 25-year-old man comatose after motorcycle accident
• GCS 7
• Abnormal flexion bilaterally
• No hypoxia or hypotension
• Normal glucose and hemoglobin
• Diffuse injury II on CT
Illustrative Case 2 – IMPACT Calculation

Prognostic Results:

Predicted probability of 6 month mortality: Core model: 19%
Predicted probability of 6 month unfavourable outcome: Core model: 39%

Bar chart showing:
- Core: 19 unfavourable outcome, 0 mortality
- Core+CT: 0 unfavourable outcome, 0 mortality
- Core+CT+Lab: 0 unfavourable outcome, 0 mortality

Legend:
- Unfavourable Outcome (Mortality/Vegetative state/Severe disability)
- Mortality
However...

• With ICP targeted therapy, Olivecrona and Koskinen (2012) found outcomes were better than predicted by IMPACT calculator, by 13.6%.

• Should use IMPACT calculator with caution.

• Consider adding other technology.
Somatosensory Evoked Responses
SSEP Grades

Black: absent N20 and P22; dotted: P22 < 0.9 microV or 2.5 x smaller than contralateral side, or P/N13-N20 interpeak latency >7.2 msec; white = P/N13-20 latency normal. Houlden et al., Neurosurgery 1990
SSEP Grades and Outcome
Houlden et al., Neurosurgery 1990

Good recovery
n = 51
R = 0.57
p < 0.00001

Moderate disability

Severe disability

Vegetative

Dead

G.O.S. (> 6 months)

Median n. SSEP Grade (< 1 week)
Other Promising Ancillary Tests

- Biomarkers: S-100, NSE, neurofilaments, TNF.
- Diffusion Tensor Imaging with MRI
- Resting State (DFN) MRI
- Transcranial magnetic stimulation.

- Promising, but with small series.
- Need larger validated studies to provide cut off values.
- Limited availability of technology.
Conclusions/Key Points

• Use evidence-based criteria in arriving at a prognosis
• In discussion with families give the odds and probabilities: we are never 100% certain, unless brain death is present.
• When prognosis is uncertain consider applying special tests (fMRI, ERPs, EEG) if available and allow more time for re-evaluation.
• Discussion needs input from family re: patient values and directives.
• Stay tuned for promising developments in electrophysiology, tract imaging, fMRI and biomarkers.
References


and Practice 2018;3:1-11
References (continued)


• Moskowitz J, Quinn T, Khan M, et al. Should we use the IMPACT-Model for the Outcome Prognostication of TBI patients. MDM Policy and Practice 2018;3:1-11


