

DIFFERENTIAL DIAGNOSIS FROM LIMB-GIRDLE MUSCULAR DYSTROPHIES

Marianne de Visser Dept. of Neurology Amsterdam University Medical Centre Amsterdam, The Netherlands m.devisser@amsterdamumc.nl

Disclosure

- On site PI Pharnext (CMT)
- Co-investigator FORCE trial (postpolio syndrome)
- Member Adjucation Committee Bristol-Myers Squibb Company (myositis), member Data Safety Monitoring Board Novartis
- Chair International Sata Monitoring Committee Dynacure

Learning objectives

At the end of this lecture

- the learner is able to make a differential diagnosis if a patient presents with limb-girdle syndrome
- the learner is able to diagnose the most frequent causes of limb-girdle syndrome

Limb Girdle Muscular Dystrophies – Nomenclature and reformed Classification

Date: 17-19th March 2017

To reassess the nomenclature of the limb girdle muscular dystrophies (LGMD)

Consensus on the term LGMD

The term 'limb girdle' is used to describe these disorders because the muscles most severely affected are generally those of the hip and shoulders – the limb girdle muscles

Creatine kinase activity is elevated

Proposed subtype classification: "LGMD, inheritance (R or D), order of discovery (number), affected protein"

LGMD D

LGMD D1 DNAJB6-related LGMD D2 TNPO3-related LGMD D3 HNRNPDL-related LGMD D4 calpain 3-related LGMD D5 collagen 6-related

LGMD R

_GMD R1	calpain 3-related
_GMD R2	dysferlin-related
_GMD R3	α -sarcoglycan-related
_GMD R4	β -sarcoglycan-related
_GMD R5	γ-sarcoglycan-related
_GMD R6	δ -sarcoglycan-related
_GMD R7	telethonin-related
_GMD R8	TRIM32-related
_GMD R9	FKRP-related
_GMD R10	titin-related
_GMD R11	POMT1-related
_GMD R12	anoctamin 5-related
_GMD R13	fukutin-related
_GMD R14	POMT2-related
_GMD R15	POMGnT1 -related
_GMD R16	dystroglycan-related
_GMD R17	plectin-related
_GMD R18	TRAPPC11-related
_GMD R19	GMPPB-related
_GMD R20	ISPD-related
_GMD R21	POGLUT1-related
_GMD R22	collagen 6-related
_GMD R23	laminin α 2-related
_GMD R24	POMGnT2-related

Mimics of LGMD (proximal muscle weakness + hyperCKemia)

Inherited

Spinal muscular atrophies (types 3 and 4) Metabolic myopathies

- Pompe disease TREATABLE
- Mitochondrial myopathies
 Myotonic dystrophy type 2
 Facioscapulohumeral muscular dystrophy
 Emery-Dreifuss muscular dystrophy

Acquired - TREATABLE

Idiopathic inflammatory myopathies (inclusion body myositis only symptomatic treatment) Drug-induced myopathies Endocrine myopathies (e.g. hypothyroid myopathy)

SMA is currently a treatable disease

- In December 2016 the U.S. Food and Drug Administration approved nusinersen (Spinraza[™]) as the first drug approved to treat children and adults with SMA (increases production of the full-length SMN protein). EMA followed in April 2017.
- In August 2020, the FDA approved the orally-administered drug risdiplam (Evrysdi) to treat patients age two months of age and older with SMA, including SMA type 3. Recommended for approval by EMA in February 2021.

> J Neurol. 2021 Mar;268(3):923-935. doi: 10.1007/s00415-020-10223-9. Epub 2020 Sep 15.

Nusinersen treatment significantly improves hand grip strength, hand motor function and MRC sum scores in adult patients with spinal muscular atrophy types 3 and 4

Bram De Wel ¹ ², Veerle Goosens ³, Atka Sobota ⁴, Elke Van Camp ⁴, Ellen Geukens ⁵, Griet Van Kerschaver ⁵, Marlène Jagut ⁶, Kathleen Claes ⁷ ⁸, Kristl G Claeys ⁹ ¹⁰

Affiliations + expand

Article

Nusinersen Wearing-Off in Adult 5q-Spinal Muscular Atrophy Patients

Alma Osmanovic *, Olivia Schreiber-Katz 🕩 and Susanne Petri

20 y/o male Hx/ Since 2 years progressive weakness of shoulder girdle and upper leg muscles Previous hx not relevant Family history negative

Ex/

- Wasting/weakness of shoulder girdle muscles
- Positive Gowers'sign
- Hypoactive knee jerks
- Tremor hands

Ancillary investigations sCK 25 x upper limit of normal Muscle CT: no abnormalities EMG was not done Muscle biopsy:

Diagnosis: SMA type 4 (25 x elevated sCK is unusual, but has been described (Yiu et al. Muscle Nerve 2008;38:930).

Take-away: Tremor of hands (polyminimyoclonus) is characteristic of SMA

Late onset Pompe disease

51 y/o female Hx/ ~ 2 years difficulty getting up the stairs and mounting a horse. In retrospect, symptoms may have been present since age 40 years. Fam hx: 9 sibs (eldest sister same problems?)

Ex/ Positive Gowers' phenomenon Weakness pelvic girdle and thigh muscles Scapulae alatae

Late onset Pompe disease

CK: 5 x ULN

Muscle bx: glycogen accumulation in vacuoles Deficiency of acid maltase in leukocytes: 21 (N 60-250) DNA analysis: compound heterozygote for c.IVS1-13T>G and C.379-380deITG (p.Cys127fs) mutations in the GAA gene

Approach after diagnosis: Lung function was measured and ERT was provided

Beneficial effect of Alglucosidase alfa in Late onset Pompe Disease

Schoser et al. J Neurol 2017

Idiopathic inflammatory myopathies

Immune-mediated necrotizing myopathy

61 y/o woman

Hx/ Progressive limb-girdle muscle weakness since ~4 months and difficulty swallowing

- Ex/ Weakness limb-girdle muscles
 - CK 9982 IU/L

- Positive antibodies against 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR)
- Treatment: pulsed high dose dexamethasone (6 months, one cycle/month) and muscle weakness resolved.

Myositis or muscular dystrophy?

17 y/o girl

- Slowly progressive muscle weakness ~ 1 year
- No swallowing difficulty
- Family history not contributory Ex:
- Weakness neck flexors and proximal muscles MRC grade 3
- Positive Gowers' phenomenon (not able to get up from a squat), waddling gait, scapular winging
- Slight contractures elbows, wrists
- No skin changes

Ancillary investigations

- CK : 14.467 IU/L
- Muscle CT: no abnormalities
- EMG: myopathic

DD

- Limb girde muscular dystrophy
- Myositis
- Muscle biopsy:

Myositis may mimic muscular dystrophy

Lu Wang, Linlin Liu, Hongjun Hao, Feng Gao, Xiao Liu, Zhaoxia Wang, Wei Zhang, He Lv, Yun Yuan*

A puzzling case

Hx/

- 41-year-old male with a 6-month history of exercise-related muscle pains, cramps, and muscle weakness
- Past medical history unremarkable
- Family history negative for neuromuscular disorders

Ex/

- Slight wasting and weakness of shoulder girdle muscles
- Increased lumbar lordosis, positive Gowers' phenomenon
- Firm calves
- Normal sensation. Normal reflexes

Ancillary investigations

Serum CK activity 3530 IU/L

(N < 130)

- Biopsy from quadriceps muscle
- Acid maltase activity in leucocytes: normal
- DNA analysis for various genes: no pathogenic variants

Course of the disease

- Increase in muscle weakness; nasal dysarthria; sleep-apnea syndrome
- Markedly increased TSH (185 mE/L, normal 0.4-4) and free T4 < 2mE/L (N 10-23)
- Anti-thyroid peroxidase antibodies present

Dx/ Auto-immune thyroiditis manifesting with hypothyroidism and myopathy

Myopathy and hypothyroidism

- 79%, including
 - weakness (54%)
 - fatiguability, muscle pain, stiffness or cramps (42%)
- Detectable proximal muscle weakness (37%)
- Few cases of myxoedema or rhabdomyolysis (Scott et al. Muscle Nerve 2002)

Drug-induced myopathy

47 y/o man developed proximal weakness and myalgia over a period of two weeks.

Ex/ proximal muscle weakness, legs > arms. sCK > 30.000 IU/L

Medication: Simvastatin and Gemfibrozil

Dx: rhabdomyolysis

Withdrawal of this medication led to normalisation of sCK and improvement of muscle strength.

Statin myopathy

- Asymptomatic hyperCKemia
- Self-limited statin myopathy
- Rhabdomyolysis rare, but occurs more frequently when a statin is used with gemfibrozil, a medication that likely has a direct toxic effect on muscles.
- Immune-mediated necrotising myopathy (rare)

Inclusion body myositis – presentation with proximal muscle weakness

Male, 57 y/o Hx: Since ~ 5-6 years progressive muscle weakness of thighs. No dysphagia. Previous and family history: not relevant.

Ex/ severe wasting and weakness quadriceps muscles. Weakness of the iliopsoas Slight weakness of the facial muscles. Positive Gowers phenomenon. muscles.

CK 2 x ULN EMG: spontaneous muscle activity quadriceps and gastrocnemius

Muscle bx: consistent with IBM Serology: positive anti-cN1A autoantibodies

Dx: Inclusion body myositis

Follow-up: Progressive dysphagia

Myotonic dystrophy type 2: Family history is crucial for diagnosis

60 y/o female

- Muscle weakness from age 50 years onwards
- In particular difficulty with climbing stairs
- Exercise-induced myalgia
- Cataract surgery at age 58 years

Ex/

- Limb-girdle muscle weakness
- Firm calves
- No myotonia

Ancillary investigations

- sCK slightly elevated
- EMG: myopathy, no myotonia
- DNA: repeat expansion intron 1 of the ZNF9 gene

Dx: Myotonic dystrophy type 2

Cardiac monitor implanted because of two syncopes

Mitochondrial myopathies

32 y/o male Hx/

- Generalized muscle weakness since age 30
- Surgery to remove several lipoma's

Ex/

- Lipoma's
- Limb-girdle pattern of muscle weakness
- VC 72%

Ancillary investigations

- Serum lactate 12.5 mmol/L
- CK slightly (~2x) elevated
- High-density lipoproteins (HDL): elevated
- Muscle biopsy showed numerous RRF
- DNA analysis: m.8363G>A point mutation in tRNA-lys gene of mt DNA

>> Madelung disease

Family history

Differential diagnosis - Limb girdle syndrome

- Don't miss the potentially treatable disease, i.e. spinal muscular atrophies type 3 and 4 and Pompe disease
- And in particular hypothyroid myopathy measure the TSH level is CK is raised!
- Drug-induced myopathies medication history!
- IBM may mimic treatable idiopathic inflammatory myopathies anti-cN1A autoantibodies and imaging may be helpful
- Diagnosis of mitochondrial myopathies and myotonic dystrophy type 2 important because of cardiological complications and counseling of family members