Thrombectomy for ischemic stroke

Prof Bruce Campbell

Consultant Neurologist and Head of Stroke
Royal Melbourne Hospital
Professorial Fellow, University of Melbourne
bruce.campbell@mh.org.au
Disclosures

• Financial disclosures – none

• Off-label use of tenecteplase for ischaemic stroke
Learning objectives

• Understand the evidence behind thrombectomy eligibility
 – site of vessel occlusion
 – age
 – severity
 – time
• Understand imaging strategies and the prognostic significance of ischemic core volume
• Understand the role of IV thrombolysis before thrombectomy
 – 0-4.5hr versus >4.5h
• Understand the critical importance of Systems of care in maximising patient outcomes
Key messages

• Endovascular thrombectomy (EVT) profoundly reduces disability in a broad range of ischemic stroke patients with large vessel occlusion 0-6h after stroke onset
• EVT also benefits selected patients with favorable perfusion imaging up to 24h after stroke onset
• Currently EVT is combined with IV thrombolysis in eligible patients (with ongoing trials testing EVT alone in patients presenting directly to EVT centers)
• Faster treatment is the most effective way to improve patient outcomes – streamline transfers and minimize re-imaging
Large vessel occlusion - thrombolysis vs thrombectomy

large vessel occlusion (LVO)
• 15% of all stroke *but*
• 39% of acutely presenting stroke
• responsible for 62% of dependency and 96% of mortality (Malhotra Front Neurol 2017)
• IV thrombolysis has limited efficacy

* “LVO” definition may change with device improvements

** planned trials to add IV lysis to thrombectomy >4.5hr

>70% - no reperfusion therapy super-mild, established, very late
EDITORIAL

Endovascular Therapy for Stroke — It’s about Time
Anthony J. Furlan, M.D.

New Eng J Med 2015:
• 5 Positive randomized trials
• 2 Editorials
• Faster, better reperfusion
• More Imaging

ORIGINAL ARTICLE

A Randomized Trial of Intravenous Treatment for Acute Ischemic Stroke
O.A. Beckheme, P.S.S. Fransen, D. Beumer, L.A. van den Berg, H.F. Lingeman, A.J. Yoo,
W.J. Schoneveld, J.A. Voos, P.J. Nederkoorn, M.J.H. Wermer, M.A.A. van Walderveen,
J. Staaks, J. Hollneger, J.A. van Dossuyten, G.J. Vlietman, A. Nijhoff, J. Boiten,
P.A. Brouwer, B.J. Emmer, S.F. de Brij, L.C. van Dijk, L.J. Kappelle, R.H. Lo,
E.J. van Dijk, J. de Vries, P.L.M. de Kort, W.J.J. van Rooij, J.S.P. van den Berg,
B.A.A.M. van Hasselt, L.A.M. Aarden, R.J. Dallinga, M.C. Visser, J.C.J. Bot,
P.C. Vroomen, O. Esghi, T.H.C.M.L. Schneider, R.J.J. Heijboer, K. Keizer,
A.V. Tielbeek, H.M. den Hertog, D.G. Gerrits, R.M. van den Berg-Vos, G.B. Karas,
E.W. Steyerberg, H.Z. Flach, H.A. Bregt, M.E.S. Meeuwig, S.F.M. Reinders,
L.M. Beenen, R. van den Berg, S.P. Koudstaal, W.H. van Zwan, Y.B.W.E.M. Roos,
A. van der Lugt, R.J. van Oostenbrugge, C.B.M. Majoie, and D.W.J. Dippel,
for the MIR CLEAN Investigators*

ORIGINAL ARTICLE

Stent-Retriever Thrombectomy after Intravenous t-PA vs. t-PA Alone in Stroke
Jeffrey L. Saver, M.D., Mayank Goyal, M.D., Alain Bonafé, M.D.,
Hans-Christoph Diener, M.D., Ph.D., Elad I. Levy, M.D., Victor M. Pereira, M.D.,
Gregory W. Albers, M.D., Christophe Cognard, M.D., David J. Cohen, M.D.,
Werner Hacke, M.D., Ph.D., Olav Jansen, M.D., Ph.D., Tudor G. Jovin, M.D.,
Heinrich P. Mattke, M.D., Raul G. Nogueira, M.D., Adrián H. Siddiqui, M.D., Ph.D.,
Dáire P. Vavak, M.D., Blake W. Bakay, M.D., Thomas G. Devlin, M.D., Ph.D.,
Demetrios K. Lopes, M.D., Vivek K. Reddy, M.D., Richard du Mesnil de Rochemont, M.D.,
Oliver C. Singer, M.D., and Reza Jahan, M.D., for the SWIFT PRIME Investigators*

ORIGINAL ARTICLE

Thrombectomy within 8 Hours after Symptom Onset in Ischemic Stroke
T.G. Jovin, A. Chamarro, E. Cobo, M.A. de Miguel, C.A. Molina, A. Rosira,
I. Sant Román, J. Serena, S. Abilleira, M. Ríos, M. Millán, X. Uria, P. Cardona,
E. López-Carnic, A. Tomasello, C. Castaño, J. Blasco, L. Aja, L. Dorado,
H. Quezada, M. Rubiera, M. Hernández-Pérez, M. Goyal, A.M. Demchuk,
R. van Kummer, M. Gallínd, and A. Davé, for the REVASCAT Trial Investigators*

RANDOMIZED ASSESSMENT OF RAPID ENDOVASCULAR TREATMENT OF ISCHEMIC STROKE

Endovascular Therapy for Ischemic Stroke with Perfusion-Imaging Selection
B.C.V. Campbell, P.J. Mitchell, T.J. Kleinig, H.M. Dewey, L. Churilov, N. Yassi,
Y. Yan, R.J. Dowling, M.W. Parsons, T.J. Ouellet, T.Y. Wu, M. Brooks,
M.A. Simpson, F. Miteff, C.R. Levi, M. Krause, T.J. Harrington, K.C. Faulder,
B.S. Steinfort, M. Priliger, T. Ang R. Scoop, P.A. Barber, B. McGuinness,
T. Wijeratne, T.G. Phan, W. Chong, R.V. Chandra, C.F. Bladin, M. Badve, H. Rice,
L. de Villiers, H. M. A. M. Desmond, G.A. Donnan, and S.M. Davis,
for the EXTEND-IA Investigators*

ORIGINAL ARTICLE

Randomized Assessment of Rapid Endovascular Treatment of Ischemic Stroke
T.G. Jovin, A.L. Willinsky, B.L. Depke, D. Duralakshmi, D.F. Fee, N.R. Marriott,
W.J. Montana, A.Y. Poppe, K.J. Ryckborst, F.L. Sliver, A. Sudb, D. Tempreri,
D. Williams, O.Y. Bang, E.W. Bader, P.A. Burns, H. Ocho, J.-H. Hoo,
C.A. Hulsmadi, B. Jankowitz, M. Kelly, G. Linares, J.L. Mandzka, J. Shanks,
S.S. Sahn, R.H. Swartz, P.A. Barber, S.B. Coutts, E.E. Smith, W.F. Monroe,
A. Weil, S. Subramaniam, A.P. Mitha, J.H. Wong, M.W. Lowerman,
T.T. Sajobi, and M.D. Hill for the ESCAPE Trial Investigators*
Which sites of vessel occlusion?

- ICA and M1 – benefit
- tandem disease (cervical + intracranial) – benefit
- ?M2
 - less common, highly variable anatomy
 - smaller, more tortuous, less accessible
 - less territory at risk
 - greater response to IV thrombolysis
- HERMES meta-analysis = larger/dominant/more proximal M2 with higher NIHSS benefit – need to individualize decision
- M3/4, ACA, PCA - ??
- Basilar – excluded from most trials, BEST 20% benefit “as treated”, BASICS RCT ongoing. time window: ?24hr from last known well vs ~8hr from onset of coma
Age limits?

Age is prognostic

Age **does not** modify treatment effect

Goyal et al Lancet 2016
Severity limits?

NIHSS is prognostic

NIHSS does not modify treatment effect

Uncertainty in very mild (NIHSS 0-5) → ENDO LOW trial
Thrombectomy – still time critical

MR CLEAN selection (CTA occlusion) with successful reperfusion

Fransen JAMA Neurology 2016
Thrombectomy – still time critical

For every 4 min delay after reaching emergency, 1 in 100 patients will have increased disability

Saver JAMA 2016
Thrombectomy 6 to 24 Hours after Stroke with a Mismatch between Deficit and Infarct

Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging

Ischemic Penumbra – the reason we can improve outcome after ischaemic stroke

Astrup, Symon 1977
CT perfusion – diagnosis and prognosis

Delayed TTP/Tmax = collateral territory

Low CBV = likely irreversibly damaged

Area under curve ≈ 0

Area = CBV
Automated CT perfusion processing

“How much blood supply” (severely reduced ≈ dead)
relCBF<30% of normal brain Campbell et al Stroke 2011
* time to reperf & grey vs white matter

“How delayed is the blood supply” (severely delayed ≈ at risk)
Nogueira NEJM 2017

 ordinal NNT 2.0
 mRS 0-2: 49% vs 13%, p<0.0001
 84% mTICI 2b/3
 SICH 5.6% vs 3.0%, p=0.50

 Albers NEJM 2018

 ordinal NNT 2.1
 mRS 0-2 45% vs 17%, p<0.0001
 76% mTICI 2b/3
 SICH 6.5% vs 4.4%, p=0.75
DAWN eligibility effect in DEFUSE 3

DEFUSE 3 criteria
- simpler
- ~60% more patients eligible
- No reduction in treatment effect within age, NIHSS or core volumes included

i.e. 6-24hr with ICA/M1 and <70mL core → thrombectomy

DAWN Ineligible, (OR 2.96, 95% CI 1.26-6.97); DAWN Eligible, (OR 2.66, 95% CI 1.36-5.23) P value for interaction = 0.47

Albers et al NEJM 2018
Is time still brain? Yes!

- Overall stroke population are very time sensitive – still need to go as fast as possible

- The proportion of patients who remain eligible by imaging criteria decreases over time (~50% of LVO in the 6-24hr time window based on DEFUSE 3 screening)

- However, if an individual patient is unavoidably delayed in presentation AND imaging is still favorable then they are likely to benefit from reperfusion
advanced imaging is not just about “excluding” patients

- including more patients
 - mild NIHSS but significant perfusion abnormality
 - late/unknown time
 - “low ASPECTS” but only moderate volume NCCT changes
 - clinically “marginal” but good imaging

AND

- diagnostic benefits
 - when patients present the first question is “is it stroke”
 - variable levels of experience on ground, in-hours, after-hours, telemedicine
 - improved NCCT interpretation when you know where to scrutinize
 - LVO may be chronic, partial, asymptomatic – perfusion can help

AND

- Maybe in future we will have non-reperfusion-based therapies…
 - glyburide, NA1 etc might benefit from imaging to target those not likely to do well just with reperfusion
Impact of **Core volume**, **Age** and **Time (imaging to reperfusion)** on functional outcome in patients successfully reperfused

- 10ml core mRS 0-2
- 100mL core mRS 0-2
- 100mL core mRS 0-3

For 0-6 hour patients don’t exclude purely on basis of core volume:
Balance core volume and location, expected time to reperfusion, pre-morbid status & tolerance of disability if known

Campbell et al Lancet Neurology 2019
If eligible for both treatments should we still give thrombolysis before thrombectomy?

<table>
<thead>
<tr>
<th></th>
<th>Intervention</th>
<th>Alteplase</th>
<th>Standard care</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Reperfusion TICI 2b/3 [Angio Core lab determined]</td>
<td>77%</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>mAOL 2-3 (at 2-8h CTA) [CT Core lab determined]</td>
<td>---</td>
<td>37%</td>
<td>7%</td>
</tr>
</tbody>
</table>

Goyal et al ESCAPE, NEJM 2015

<table>
<thead>
<tr>
<th>IV-IA bridging</th>
<th>Direct IA</th>
</tr>
</thead>
<tbody>
<tr>
<td>potential benefit if failure/delay in endovascular procedure</td>
<td>potential reduction in symptomatic intracerebral (and systemic) hemorrhage</td>
</tr>
<tr>
<td>potential benefit in dissolving distal embolic fragments of thrombus/multi-territory emboli</td>
<td>potential reduction in distal migration/fragmentation of thrombus “out of reach” prior to endovascular procedure</td>
</tr>
<tr>
<td>potential for pre-endovascular reperfusion</td>
<td>save cost of alteplase/tenecteplase</td>
</tr>
</tbody>
</table>
Meta-analysis of observational data

mRS 0-2

<table>
<thead>
<tr>
<th>Study</th>
<th>mRS 0-2/Total</th>
<th>mRS 0-2/Total</th>
<th>Weight</th>
<th>Odds Ratio [95% CI] of MT+IVT to MT-IVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>861/1769</td>
<td>520/1174</td>
<td>100.0%</td>
<td>1.27 [1.05, 1.55]</td>
</tr>
</tbody>
</table>

Test for subgroup differences: $P^2 = 0\%$
Overall heterogeneity: $\tau^2 = 0.02; I^2 = 17\%$
Test for overall summary effect: $Z = 2.41 (P = 0.02)$

DEATH

<table>
<thead>
<tr>
<th>Study</th>
<th>Death (mRS 6)/Total</th>
<th>Death (mRS 6)/Total</th>
<th>Weight</th>
<th>Odds Ratio [95% CI] of MT+IVT to MT-IVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>263/1774</td>
<td>227/1202</td>
<td>100.0%</td>
<td>0.71 [0.55, 0.91]</td>
</tr>
</tbody>
</table>

Test for subgroup differences: $P^2 = 24.7\%$
Overall heterogeneity: $\tau^2 = 0.02; I^2 = 13\%$
Test for overall summary effect: $Z = 2.74 (P = 0.006)$

Recanalization

<table>
<thead>
<tr>
<th>Study</th>
<th>MT+IVT</th>
<th>MT-IVT</th>
<th>Weight</th>
<th>Odds Ratio [95% CI] of MT+IVT to MT-IVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>1320/1652</td>
<td>926/1216</td>
<td>100.0%</td>
<td>1.46 [1.09, 1.96]</td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 0.08; I^2 = 37\%$
Test for overall summary effect: $Z = 2.56 (P = 0.01)$

Recan with ≤ 2 device passes

<table>
<thead>
<tr>
<th>Study</th>
<th>MT+IVT</th>
<th>MT-IVT</th>
<th>Weight</th>
<th>Odds Ratio [95% CI] of MT+IVT to MT-IVT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>159/316</td>
<td>103/231</td>
<td>100.0%</td>
<td>2.06 [1.37, 3.10]</td>
</tr>
</tbody>
</table>

Heterogeneity: $\tau^2 = 0.00; I^2 = 0\%$
Test for overall summary effect: $Z = 3.48 (P = 0.0005)$

NB mostly “direct” patients were lysis-ineligible patients intended for thrombectomy who recanalize prior were not included…

?thrombolysis facilitates thrombectomy even if reperfusion not achieved prior to procedure

Mistry Stroke 2017
Systems of Care – Time is Brain!
Conclusions

Rapid reperfusion remains the proven treatment paradigm in stroke

- Currently thrombolysis + thrombectomy if eligible for both (DIRECT trials ongoing)
- Thrombectomy for ICA, M1, tandem, basilar, selected M2 occlusions
- “Good” premorbid function
- No age or clinical severity limits
- **0-6h**: broad imaging criteria **6-24h**: DEFUSE 3 imaging selection <70mL core
- CT perfusion is diagnostic and characterizes irreversibly injured core/collaterals - very helpful for prognosis in any time window
- Simply delivering thrombolysis & thrombectomy faster and increasing access to appropriate patients is essential to maximize effectiveness – focus on systems of care

~