Hormone Therapy May Benefit Cognition, Memory

BY MICHÉLE G. SULLIVAN
Mid-Atlantic Bureau

CHICAGO — Hormone therapy might preserve cognition and memory in postmenopausal women and attenuate some cognitive deficits in Alzheimer’s disease, new research suggests. Controversy exists over the possible cognitive benefits of hormone therapy in older women, Mary Tierney, Ph.D., said at the International Conference on Alzheimer’s Disease. “While preclinical and observational studies have shown a positive effect of estradiol on the brain and cognitive function, randomized controlled trials using conjugated equine estradiol have shown no treatment effects in women at risk for Alzheimer’s disease, or in women who have the illness.” And the oft-cited Women’s Health Initiative Memory Study suggested that hormone therapy might even hurt, not help, said Dr. Tierney of the Sunnybrook Health Sciences Centre, Toronto.

In a new 2-year trial, Dr. Tierney and colleagues randomized 142 women aged 61-87 to either placebo or to 1 mg estradiol daily plus 0.3 mg progesterin 3 days per week. None of the women had dementia, but all had normal or below normal baseline memory scores. The subjects’ mean age was 74; mean age at menopause was 49. Multivariate analysis controlled for age, years of education, apo E4 status, and prior hormone therapy use. There was no significant difference between groups on the primary end point of delayed recall, Dr. Tierney said. But when she split the group according to baseline California Verbal Learning Test (CVLT) scores, significant differences did emerge. Compared with women who scored below the 50th percentile on baseline, those on therapy who scored above the 50th percentile showed significantly less decline in delayed verbal recall than did those in the placebo group. Similar, but nonsignificant, differences occurred on immediate recall, interference recall, cued recall, and recognition memory.

“The critical period for estrogen exposure to benefit cognition may not be limited to the menopause transition, since these women were more than 20 years postmenopausal,” but might also be related to the state of brain function when therapy is initiated, said Dr. Tierney.

In an interview with World Neurology, Victoria Luine, Ph.D., said, “Recent studies on cognition in aging animals are very promising. In rodents, estradiol increases brain plasticity and enhances neurogenesis. We would like to see if these results translate into humans.”

See Hormone Therapy • page 8
Committee Has Big Plans for 2009

BY ROGER N. ROSENBERG, M.D.

At the Annual Meeting of the American Academy of Neurology, the WFN’s Research Committee met to review and discuss the 2009 World Congress of Neurology (WCN).

The research committee has been involved in deliberations for the past several world congresses and has worked closely with local organizing committees and WFN trustees. The WCN 2009 Scientific Program, “Innovation in Neurology,” was presented in detail by program cochair Dr. Prayaov Prayoonvisut and Dr. Chandharkhan, were praised for their skill in developing the WCN 2009 Scientific and Educational programs.

Meanwhile, the committee urges WFN members to become active in the research groups so that future World Congresses will have renewed interest from the next generation of neurologists.

Dr. ROGER N. ROSENBERG is the Research Committee Chair and a WFN trustee.

World Federation of Neurology Site Now Updated

The updated World Federation of Neurology Web site is now online. It features an inviting, easy-to-use design. Check it out at www.wfneurology.org.

Nomination Deadline Extended

Nominations are invited from national neurologic societies and individuals for the following World Federation of Neurology posts:

- First Vice President
- Elected Trustee

Elections will take place at the Annual General Meeting (AGM) of the Council of Delegates during the Bangkok World Congress of Neurology in Thailand, currently scheduled for Oct. 24-30, 2009.

The proposed candidates for first vice president will be required to formulate a full statement of their goals and objectives for the organization, which will be published.

The previous deadline for receipt of nominations is being extended.

Names of those candidates who are willing to serve must be received at the WFN London headquarters by Friday, Nov. 14, 2008, at the latest.

The proposed candidates also should be sure to receive the official support of their respective national societies.

The names of those who are short-listed will be published in the March 2009 issue of World Neurology.

They will also be posted on the WFN Web site at least 6 months before the date of the election.

Any additional nominations must be submitted jointly by five or more delegates at least 30 days before the Annual General Meeting.
Another Course Planned for 2009

Dakar • from page 1

Italy, Slovenia, Togo, Tunisia (representing Maghreb and Arab countries of PAUNS), the United Kingdom, and Senegal.

Over 100 neurology trainees and specialists from 18 French-speaking African countries attended the course, held at the medical faculty site of the university. The training and education curriculum, contribution, and strong willingness to learn were impressive. A highly interactive session was organized for the last day, at which several clinical cases were discussed in advance by participants from Belgium, Benin, Cameroon, Cote d’Ivoire, France, Italy, Senegal, Slovenia, Togo, Tunisia, and the United Kingdom. The course addressed a variety of topics—specifically neurology, psychiatry, and the history of neuroscience. The course was well received, and the participants were impressed by the quality of the teaching and the potential for further collaboration.

This African initiative had many roots. The University Cheikh Anta Diop, in Dakar, was instrumental in preparing the ground for the meeting, which was opened by Prof. Cheikh S. Boye, dean of the faculty of medicine. It had been decided at the 2007 meeting of the Pan-African Society of Neuroscientists in Kinshasa to organize an international teaching course in clinical neurology in sub-Saharan Africa. In 2008 the Africa Committee of the World Federation of Neurology, chaired by Amadou Gallo Diop, worked hard to realize the meeting. In a region where neuroscience is underdeveloped, the Pan-African Association of Neurological Sciences (PAANS), the umbrella organization that brings together African neurologists and neurologists, supported the initiative. That organization has increased its influence on health authorities. The International Brain Research Organization (IBRO), in partnership with UNESCO’s International Brain Research Organization (IBRO), has provided a new force to develop and sustain brain research across the African continent. IBRO and the International Basic Sciences Programme (IBSP) of UNESCO have formed a partnership to create an initiative called Building Brain Sciences in Africa. Over the last 2 years, it has developed close links with the WFN and the European Federation of Neurological Societies (EFNS) to promote clinical neuroscience in Africa. This new collaboration strengthens the long-standing association of UNESCO and IBRO as the core of a broad-based partnership with other international and African organizations such as the EFNS and the WFN. The EFNS has had a central role in the conception and content of the meeting. The organization has long encouraged strong collaboration in Africa, initially with North African (Francophone) countries and then with the many Anglophone African countries. It remains a forceful partner with the WFN in the Africa initiative. The Pan-Arab Union of Neurological Societies (PAUNS) also has a strong base in the North African countries and always has been available to support African clinical neurology, teaching, and research.

The World Neurology Foundation (WVF), the charitable arm of WFN in North America, also was involved. They provided tool kits that contained neurologic equipment necessary for clinical examination that were distributed among meeting participants.

The Dakar course represented a primarily African initiative with many international organizations collaborating in a smooth and effective manner. It has paved the way for the Teaching Course in Neurology in Africa 2009.
Two recently completed external reviews of the neurology department and residents at Addis Ababa University in Ethiopia have already resulted in correcting significant department needs and confirming the expertise of young neurologists in that country. In December 2007, at the request of Dr. Guta Zenebe, neurology department chairman, and members of the Association of Neurological Sciences of Ethiopia, the neurology department—founded by Dr. Zenebe—was visited by WFN Education Committee members Dr. Gretchen Riebeck, associate professor and director of the international Neurological and Psychiatric Epidemiology program at Michigan State University, East Lansing (U.S.A.); Dr. Amadou Gallo Diop, professor and chairman of neurology at Dakar (Senegal) University; and myself. Our goal was to carry out an external program to give recommendations for development.

Upon arrival, we met with the Ethiopian minister of health, the dean of the medical school at Addis Ababa University, and the chairs of all the relevant departments at the school. We visited both inpatient and outpatient facilities, and discussed them with faculty and residents. Upon leaving, we drew up a report of our findings that was felt to be of great value to the department and residents, and we were told that several of the needs outlined in it have already been corrected.

One cannot underestimate the enormous difficulty in providing adequate education for health providers in this country that is so lacking in resources, or the remarkable results that have been obtained by the neurologists who work there. Then, in April of this year, at the request of the department of neurology at Addis Ababa University, the chair of another affiliate of the Education Committee of the WFN (Dr. James Johnson, consultant neurologist, Auckland, New Zealand; Prof. Pierre Billi, professor emeritus of neurology, University of KwaZulu-Natal, Durban, South Africa; and Dr. Redda Tekle-Haimanot, professor of neurology, Addis Ababa University) carried out an external evaluation of the first group of neurology resident graduates in that country.

All neurology residents at Addis Ababa University have had 2–3 years of internal medicine training, which is very appropriate for neurology practice in their country. Each resident is required to carry out a research project and defend a thesis. Dr. Zenebe and his associate Dr. Mehila Zebebigu have established a laudable training program with specific objectives for each year of training, subspecialty training where available, and effective evaluation and feedback mechanisms.

The WFN external evaluation consisted of a multiple choice and essay written examination, an Objectively Structured Clinical Examination, and a bedside evaluation of cases. In the examiner’s words, “The candidates were remarkably knowledgeable and confident, considering the lack of exposure to certain facilities” such as imaging and electrophysiology. Because experience suggests that residents receiving training in their home country are much less likely to emigrate than are those who receive their training elsewhere, these results were especially welcomed, and they reinforced the WFN Education Committee’s view that resident training is best carried out in one’s own country. The WFN has developed strong alliances with its current home of the department, the University, and nonphysician neurologic education. Additionally, Dr. Joseph Berger, chair of the department of neurology at the University of Kentucky, Lexington (U.S.A.), in an effort led by Dr. James Bower to provide a cadre of visiting professors who are actively involved with resident, medical school, and nonphysician neurologic education.

The results of these two external reviews reinforced our view that carefully targeted WFN education efforts, in conjunction with other resources, can produce important results with modest resource inputs. In one example, neurologic care in Ethiopia has been assisted for many years by a remarkable organization exporting Ethiopian physicians and neuroscientists led by Dr. Eteawg Mehart, a neurologist in private practice in Morehead, Kentucky (U.S.A.) and an honorary consultant at Addis Ababa University. The nonprofit organization that he has established, People to People, has provided major educational and resource assistance to the neurology department at the university, including electronic communication equipment, books, organization of conferences, and so on.

The department also receives support from the Mayo Clinic, Rochester, Minnesota (U.S.A.), in an effort led by Dr. James Bower to provide a cadre of visiting professors who are actively involved with resident, medical school, and nonphysician neurologic education. Additionally, Dr. Joseph Berger, chair of the department of neurology at the University of Kentucky, Lexington (U.S.A.), has been involved with a neuro-AIDS program. Finally, the department of neurology at McGill University, Montreal, Canada, has been an active participant in educational support for Ethiopia over many years.

No doubt as a result of all this outreach, the department of neurology at Addis Ababa has a plan to establish a neuroscience institute at the university to house the neurology, neurosurgery, and psychiatry departments. The Ethiopian Ministry of Health has designated Zewditu Hospital, the current home of the department, for this purpose. Ethiopia is also a new but important participant in the WFN continuing education program. With approximately 80,000,000 people in sub-Saharan east Africa, Ethiopia has more than its share of health, resource, and political problems. But despite many hurdles, neurologists in Ethiopia have the will, insight, skills, and persistence to provide better care for the citizens of their country. I am certain that, with help from their many friends, their future is bright.

Dr. Munsat, Emeritus Professor of Neurology at Tufts University, Boston, U.S.A., is chair of the WFN’s Education Committee.

At Stockholm Brain Institute, Collaboration Is Key

By Hans Forssberg, M.D., and Åsa Hedberg, Ph.D.

The Stockholm Brain Institute, clinical researchers from several neurologic disciplines work together with basic neuroscientists and computational scientists to gain better understanding of cognitive brain functions in health and disease. The Stockholm Brain Institute (SBI) is a research center for cognitive and computational neuroscience based on 10 research groups from the three universities in Stockholm: Karolinska Institute, Royal Institute of Technology, and Stockholm University.

The groups represent key scientific areas from neurobiology, mathematics, behavioral sciences, and mathematical sciences. SBI is located on the premises of the University Hospital, which allows interactions with clinicians from disciplines such as psychiatry, neurosurgery, and pediatrics. The clinicians’ strong influence on the center results in clinically relevant projects. Research is mainly focused on three cognitive functions: learning/memory, emotion, and action/perception. The areas are approached from three perspectives: normal development and aging; sex differences; and pathophysiology, with a focus on neurodevelopmental disorders (autism, attention-deficit/hyperactivity disorder, cerebral palsy); psychiatric disorders (schizophrenia); and neurodegenerative disorders (Alzheimer’s, Parkinson’s, Huntington’s disease). The goal is to explore the pathologic processes underlying these disorders to develop new principles for prevention and intervention, as well as new biomarkers. The institute has a systems neurobiology approach; that is, from genes, cells, and neural networks to cognitive functions and behavior. SBI is also unique in its strong computational group. Mathemati-
Lisak Is Fellow by Distinction of Royal College of Physicians

His research helped to define immune processes in the pathogenesis of neurologic disorders.

BY DENISE NAPOLI
Associate Editor

Dr. Robert Lisak, an American, has been elected as a fellow “by distinction” of the Royal College of Physicians in London, one of the highest honors the United Kingdom–based society can bestow.

Of 13 such fellowships awarded this year, only 5 went to Americans.

Dr. Lisak, editor of the Journal of the Neurological Sciences (the official journal of the World Federation of Neurology), has been conducting research and taking a leadership role within the field of neurology for nearly half a century.

“I was involved in some of the earliest studies examining the role of T cells, B cells, and antibodies in the pathogenesis of multiple sclerosis,” he said.

He cited, for example, a study of antimyelin antibodies in neurologic diseases (Arch. Neurol. 1974;32:163-7). He also has conducted important research into the in vitro cell-mediated immunity of cerebrospinal fluid lymphocytes to myelin basic protein in primary demyelinating diseases (N. Engl. J. Med. 1977;297:850-3), as well as studies concerning the animal model of experimential autoimmune encephalomyelitis.

In the field of myasthenia research, Dr. Lisak’s work “has focused on immune regulatory mechanisms and cellular interactions that allow for the development of this autoimmune disease. Since I have also been involved in therapeutic trials and studies, I guess I have been doing what is now called translational research for 42 years.”

Dr. Richard Lewis, professor and associate chair of neurology with Dr. Lisak at Wayne State University, Detroit, said in an interview that he has known Dr. Lisak for more than 30 years.

A resident at the University of Pennsylvania, Philadelphia, when Dr. Lisak was on the faculty, Dr. Lewis recounted that Dr. Lisak’s passion for research “bordered on the obsessive.”

“I was impressed at that time by his encyclopedic knowledge, his enthusiasm for neurology—particularly for the immunologic disorders—and his incredible energy and drive.”

“[Dr. Lisak] was doing translational research before the term was coined. I remember drawing extra tubes of (cerebrospinal fluid) on every patient I did a lumbar puncture on, so that Dr. Lisak could investigate immunologic markers of disease,” commented Dr. Lewis.

Dr. Lisak earned his MD at the College of Physicians and Surgeons, Columbia University, New York. He also trained in medicine at Montefiore Medical Center and the Bronx Municipal Hospital, both in New York.

His neurology and immunology training took place at the University of Pennsylvania, Philadelphia, and at the National Institute of Mental Health.

Additionally, Dr. Lisak also completed a Fulbright fellowship at the University of London.

Some of Dr. Lisak’s upcoming projects include combining the use of molecular biologic techniques with cell biology, and immunologic approaches to study in further detail the effect of cytokines on glial cells and neurons, work done in collaboration with Joyce Benjamins, Ph.D., and others.

“In myasthenia gravis, Samia Ragheb, I, and other members of our neuromuscular group are looking at how a B-cell factor called BAFF may be involved in the evolution of the autoimmune process. And as in the past when I was at Penn and London, I have had the benefit of fantastic collaborators.”

Dr. Lisak said that his research over the years has been supported by many institutions, including the National Institutes of Health, the National MS Society, the Muscular Dystrophy Association, the Guillain-Barré Syndrome/Chronic Inflammatory Demyelinating Polyneuropathy Foundation, the Myasthenia Gravis Foundation of America, the Fulbright-Hays grant, and several pharmaceutical companies. He also thanked the department of neurology at Wayne State, his current research home.

“The honor also reflects on the department of neurology at Wayne State University, and its accomplishments, as well as the continued improvement in the Journal of the Neurological Sciences.”
Fitness May Slow Brain Atrophy in Alzheimer’s

BY MICHÉLE G. SULLIVAN
Mid-Atlantic Bureau

CHICAGO — Keeping fit may help reduce brain atrophy in patients with early Alzheimer’s, researchers said at the 12th International Congress of Parkinson’s Disease and Movement Disorders. An exercise-tolerance study confirmed that the hippocampus was significantly larger in patients who had higher fitness levels, Dr. Jeffrey Burns said at the meeting, which was sponsored by the Alzheimer’s Association. The association with fitness level also was found with whole-brain volume during a previous study in the same cohort, he added in an interview. “Those in the lower half of fitness levels have four times more brain atrophy than (do) those in the higher fitness group,” compared with normal aging, said Dr. Burns, director of the Hoglund Brain Imaging Center at the University of Kansas, Kansas City (U.S.A.).

In an interview with World Neurology, Dr. Yves Rol- land of Hôpital La Grave-Casanelard in Toulouse, France, who was not involved in the current study, said it added neuromaging evidence to the available epidemiological and basic research. “However, no randomized controlled trials have yet demonstrated that regular physical activity, a modifiable lifestyle factor, prevents dementia.”

In the current study, Dr. Burns and his colleague, Robyn Honea, Ph.D., evaluated cardiorespiratory fitness in 119 subjects older than 60, 56 had no dementia, and 63 had early-stage Alzheimer’s. All undertook a treadmill test, which measured peak oxygen consumption during the most strenuous part of the test. They also underwent MRI. All of the AD patients showed disease-related atrophy in the hippocampus, temporal cortex, and parietal cortices. But patients with higher fitness levels had significantly greater white matter volume in the hippocampus, inferior temporal gyri, and precentral gyrus.

“We found that the level of fitness was strongly related to volume in the parietal area, and also in the hippocampus,” Dr. Burns said. “That’s affected early in Alzheimer’s, and the brain undergoes a lot of atrophy in that region as the disease progresses.”

He noted that it is not possible to characterize the percentage of volume preserved in the more fit subjects, because the measurement tool—voxel-based morphometry—provides only a linear correlation. “But on the whole, people who were fit had larger brain volume in these regions.”

In another interview with World Neurology, Laura Eggertmont, Ph.D., of Vrije Universiteit, Amsterdam, who was also not involved in the study, said that the findings were timely and relevant, but it was unfortunate that the level of cognitive functioning was not also mentioned. “The literature on healthy cognitive aging also shows a strong relationship between level of physical activity and brain volume, and some randomized controlled trials have shown that aerobic physical activity interventions benefit cognitive function, specifically higher order executive control processes.”

Reduced atrophy in both grey and white matter could also have implications for cognitive and independent functioning. However, a previous study showed that, although more active AD patients had reduced brain atrophy, they did not show better cognitive functioning after controlling for age (Neurology 2008;71:210-6).

As understanding of the relationship grows, exercise prescriptions could become part of an Alzheimer’s treatment program, Dr. Burns suggested. Dr. Rolland added that physical activity is especially appealing low-cost, low-risk alternative treatment for this major public health priority.

“In addition to the multiple reasons for engaging in physical activity, preserving brain health could be a strong and convincing argument to promote activity in the population and one which could have a major impact on medical practice and public health education.”

However, Dr. Eggertmont advised caution regarding exercise in the elderly, whose ability is often hampered by disease or disability.

Neither of the researchers disclosed any conflicts.

Partial Dopa Agonist Gives Benefit in Early PD

BY PATRICE WENDLING
Chicago Bureau

CHICAGO—Pardoprunox, a partial dopamine D2- and D3-receptor agonist and full serotonin 5-HT1A-receptor agonist, significantly improved in the pardoprunox scale were also significantly more and Clinical Global Impression group (51%) than in the placebo group (36%). After a maintenance period, a modifiable lifestyle factor, prevents dementia.”

triated from 9 mg/day placebo or pardoprunox with idiopathic PD to randomized 139 patients to Unified Parkinson’s Disease Rating Scale (UPDRS) activities of daily living (–6.1 vs. –3.1) and after a phase (–6.1 vs. –3.1) and after a partial dopamine D2- and D3-receptor agonist or levodopa remains to be seen.”

The most common events in the pardoprunox and placebo groups included nausea (32 vs. 8), asthenia (10 vs. 0), increased blood pressure (5 vs. 3), somnolence (17 vs. 4), and headache (13 vs. 5), said Dr. Bronzova of Solvay Pharmaceuticals, which makes pardoprunox and sponsored the study.

In an interview with World Neurology, Dr. William J. Weiner, director of the Maryland Parkinson’s Disease and Movement Disorders Center at the University of Maryland, Baltimore, who was not involved with the study, said that the absolute change between the groups, –43 points, is not only statistically significant, but also “falls within the range of a clinically meaningful change” but still “similar to that seen with traditional agonists. Whether or not partial dopamine agonist treatment in PD is better in the short or long term than a traditional dopamine agonist or levodopa remains to be seen.”

Targeted Deep Brain Stimulation Improved Tic Severity in Tourette

BY PATRICE WENDLING
Chicago Bureau

CHICAGO—Deep brain stimulation of limbic and pallidal stimulation did not improve tic severity in patients with Tourette syndrome. In three patients with severe and medically refractory TS, researchers applied high-frequency, bilateral deep brain stimulation to the centromedial-parafascicular complex (CM-PF) of the thalamus and the ventromedial part of the globus pallidus interna (GPi).

The greatest improvement of tics was seen with ventromedial GPi stimulation, Dr. Luc Mallet said at the 12th International Congress of Parkinson’s Disease and Movement Disorders. The total Yale Global Tic Severity Scale score was reduced 67%, 96%, and 74% from baseline in patients 1, 2, and 3, respectively.

CM-PF stimulation reduced tic severity by 64%, 30%, and 40%, respectively. Combining thalamic and pallidal stimulation did not improve tic reduction (Arq. Neurol. 2008;65:952-7).

In patient No. 2, the best result was obtained after 1 month, but the effects decreased after 2 months, even with increased voltage, said Dr. Mallet of Pitié-Salpêtrière Hospital, Paris. Very good long-term effects were observed in patient No. 1, who was identified with borderline personality disorder before surgery. The decrease in tic severity was accompanied by a dramatic reduction in self-injurious behaviors and impulsiveness, allowing the patient to start psychotherapy to improve autonomy and social relationships, and to return to full-time work 2 years after surgery.

In patient No. 2, a stable reduction in tic severity was achieved 27 months after surgery using 20 hours of pallidal stimulation followed by 4 hours off. In patient 3, tic severity was reduced by 74% at 20 months without medication under pallidal and thalamic stimulation.

DBS is not without risks, said Dr. Mallet in an interview with World Neurology. “DBS should be reserved to the refractory forms of the disease or for patients who are intolerant to pharmacological treatments. Aside from these considerations, there are few drawbacks because DBS is reversible and adjustable through four available contact localizations and through adjustment of electrical parameters, including frequency, pulse width, and voltage.”

In another interview with World Neurology, Dr. Joseph Janikovic, director of the Parkinson’s Disease Center and Movement Disorders Clinic at the Baylor College of Medicine, Houston, who was not involved with the study, said, “It confirms the findings of our initial report of effectiveness and safety of GPi DBS (Neurology 2007;68:159-60) in a 15-year-old boy with malignant Tourette syndrome (Mov. Disord. 2007;22:1744-50). Since this report of the youngest case of TS treated with DBS, we have studied five other patients with similar improvements in their tics as well as their obsessive-compulsive and self-injurious behaviors.”

Dr. Janikovic has helped form guidelines for the evaluation of potential candidates for DBS in Tourette (Mov. Disord. 2006;21:1831-8). “Only those patients whose tics are so troublesome that they interfere with normal physical activity, result in self-injury, or are otherwise disabling despite optimal medical therapy should be considered,” he said.
The focus of the journal will be on psychiatric research pertinent to Asia produced either within or from outside the continent. This may include preclinical, clinical, service system and policy development research relevant to psychiatry and will highlight the socio-cultural diversity of the region as it pertains to mental health.

The Asian Journal of Psychiatry will publish

- Peer reviewed original research articles
- Review articles
- Commentaries on significant articles
- Synopses of current research highlights from Asia
- And letters to the editor.

It is comprehensive journal of psychiatry for psychiatrists, mental health clinicians, neurologists, physicians, students of mental health and those involved in mental health policy development.

Submit your vital research today!

www.elsevier.com/psychiatry
The history of neurology in South America has its roots in 1885, when the Hospital San Roque de Buenos Aires instigated its Nervous Diseases Service. Its first director was Dr. José María Ramos Mejía, a writer, sociologist, scientist, and outstanding public citizen. In 1887, only 5 years after Dr. Jean-Martin Charcot was awarded the chief of neurology position at the famous Hospital de la Salpêtrière in Paris, Dr. Ramos Mejía became the first professor of neurology in South America, at the Universidad de Buenos Aires.

Three others—Dr. Christofredo Jakob, a German neuropathologist; Dr. José A. Es- tévez, a skilled clinician; and Dr. José Inge- nieros, a sociologist—collaborated with him to develop the field in Argentina.

In 1892, Dr. Augusto Orrego Luco, who was trained in France by Dr. Char- cot, took over as professor of nervous dis- eases at the Universidad de Chile, Santi- ago. He was the most prominent figure in Chilean neurology during the second half of the 19th century, and was nick- named the Charcot of America. In 1907 the department of neurology was taken over by his disciple, Dr. Joaquín Luco Arriagada (who was trained by Dr. Joseph Babinski).

In Brazil, the discipline emerged in 1912 when the school of medicine at the Uni- versidade do Rio de Janeiro created its first department of neurology. Its first full pro- fessor, Dr. Antônio Austregésilo Rodrigues de Lima, was a politician, writer, and skilled physician; he is considered the father of Brazilian neurology.

The São Paulo School of Neurology was founded in 1925, when Dr. Enjolras Vampêr was appointed head of the department of psychiatry and neurology. Vampêr, who also was trained at Salpêtrière, is considered the founder of the discipline in Brazil.

In 1925, Chilean doctor Luco Arriagada created the Hospital del Salvador Servicio de Neurología in Santiago. In 1932 the So- ciedad de Neurología, Psiquiatría y Neu- rocirugía de Chile was founded. When Dr. Arriagada retired, Dr. Lea Plaza was made chair of neurology at the University of Chile, and Dr. José Oyarzun became chair of neurology at the Hospital del Salvador. In 1925, Uruguay also took an impor- tant step with the creation of the depart- ment of neurologic diseases at the School of Medicine of Montevideo, with Dr. Américo Ricaldoni as its chairman. In 1927, the Uruguayan government created the Instituto de Neurología de Montev- ideo (the first neurologic institute in Latin America), with Ricaldoni as its design- ated director.

Peru’s nascent field of neurology began in 1935 with Dr. Julio Oscar Trelles Montes, who was trained in Paris by Dr. Jean J. Ber- nan. Trelles is considered the father of Peruvian neurology. In 1937, he founded the Revista de Neumopsiquiatría, and 1 year later, the Sociedad de Neuropsiquiatría y Medicina Legal. In 1940, he was made pro- fessor of neuropharmacology at the school of medicine at Universidad Nacional Mayor of San Marcos. By this time, Dr. Trelles was also tending to the Refugio de Incúrbles in Lima, which was later renamed Hospita- l Santo Toribio de Mogrovejo. Almost every neurologist in Peru studied at this hospital in some capacity under Trelles’ 30-year directorship.

In Uruguay at the beginning of 1937, Dr. Alejandro Schroeder, who was trained in Germany, was appointed director of the In- stituto de Neurología in Montevideo. After Dr. Schroeder’s tenure there, the institute, which was renamed Instituto de Neurológía Prof. Dr. Américo Ricaldoni, has been ranked among the top in South America. In 1939 the Sociedad de Neu- rología y Neurocirugía de Montevideo opened with Dr. Schroeder as its first president.

In Venezuela, neurology began when Dr. Pedro B. Castro returned from Paris in 1936, where he had been trained by Prof. Georges Charles Guillin at Salpêtrière. In 1938, Dr. Castro took over as a neurology consultant at Hospital Vargas, Caracas. In 1940, the Universidad Central de Venezuela created a chair of neurology and named Dr. Castro its chairman.

Chilean neurology was invigorated in 1939 when Dr. Alfonso Asenjo Gómez, who was trained in the United States by Dr. Walter Dandy and in Germany by Dr. Wilhelm Tönnis, created the Hospital del Salvador’s service of neurosurgery.

In Buenos Aires in 1941, Dr. Vicente Dimitri was designated professor of neu- rology at the University of Buenos Aires. With Dr. Dimitri, neurology in Argentina came into its own.

In 1943, Dr. Adolfo Tolosa, Dr. Pauli- no Longo, and Dr. Oswaldo Lange created the Arquivos de Neuropsiquiatria in São Paulo under the direction of Dr. Lange. This journal remains foremost in neuro- sciences in Latin America; its articles are ac- cessible in Index Medicus, World Health Organization, Bireme, Lilacs, and Latinindex. In 1944, Dr. Dr. Deolindo Augusto de Núñez Coulto took over as chair of the department of neurology at Universidad Federal do Rio de Janeiro and consolidat- ed activity in neurology in Brazil. In 1946, he founded the Instituto de Neumología at the Universidad Federal do Rio de Janeiro, which carried out extensive research in neurology, neuropathology, and neuro- surgery. This institute, later renamed In- stituto de Neumología, Deolindo Couto da Universidade Federal do Rio de Janeiro, be- came the international face of Brazilian neurology.

In Argentina, Dr. Jose Pereyra-Kafer be- came chairman of the Hospital Ramos Mejía Neurology Service (formerly Hos- pital San Roque) in Buenos Aires, and then took over as professor of neurology at the University of Buenos Aires. The So- ciedad Neumológica Argentina (SNA) was founded in 1957. In 1953, the Instituto de Neuropsiquiatria e Investigaciones Cerebrales de Chile opened, and for the following 34 years it was directed by Dr. Asenjo.

Dr. Andrés Rosselli Quijano, who trained in the United States with Dr. Ray- mond Adams, Dr. Maurice Victor, and Dr. C. Miller Fisher, founded a neurology unit in 1956 that was annexed to the neurosurgery department at Hospital Militar Central de Bogotá. The Sociedad Neurológica de Colombia was formed in 1963.

In 1953 the Archivos Venezolanos de Psiquiatría y Neurología was created. Neurology and psychiatry became inde- pendent specialties in 1959 under Dr. Cas- tro, the first chairman and founder of the new department of neurology at the Uni- versidad de Venezuela. The quarterly Pan- American Congress was conceived within the framework of the WFN. The first open conference was held in October 1963, in Lima, Peru, chaired by Dr. J. Oscar Trellés, the country’s prime minister.

In conclusion, neurology in South America emerged toward the end of the 19th century, following the origin of the specialty in Europe and its official baptism with Charcot at Salpêtrière in Paris. The first steps took place almost simultane- ously in five countries: Argentina, Brazil, Uruguay, Chile, and Peru. In the other countries, the development of neurology took place later in the 20th century.
CAPE TOWN
2011 WORLD CONGRESS
OF NEUROLOGY
BID CITY

350 YEARS AGO, EXPLORERS WERE
IMPRESSIONED BY ITS CONVENIENCE
AND STUNNED BY ITS BEAUTY.
YOU WILL BE TOO.
M ost patients with acute neurologic infections survive, but residual problems are common and usually manifest as incomplete resolution of the acute deficits. It is not uncommon, however, to develop new complications several months or even years later. Examples include seizures and the parkinsonian syndrome following encephalitis lethargica.

It has been known that polio patients occasionally experienced a return of their original symptoms decades after an apparently complete resolution; a case report by Raymond and Charcot first appeared in 1875. Sporadic observations of the problem continued until the number of patients became large enough to call attention to this newly recognized clinical entity, postpoliomylitis syndrome (PPS). Clinical criteria were established in the mid-1980s, and research efforts intensified.

While a number of hypotheses were advanced to explain this late-developing weakness, with concomitant fatigue and pain, none is universally accepted. The comparison with multiple sclerosis (MS), another chronic neurological disease (with a relapsing and eventually chronic progressive course) in which fatigue is prominent, suggests itself.

The effects of the chronic immune activation in the central nervous system in MS likely manifest themselves in part with fatigue, a well-known and often disabling symptom. Recent studies have looked at specific markers of inflammation and correlated them with symptoms in MS. Various measures of fatigue and pain were catalogued and inflammatory markers in the blood investigated. These included tumor necrosis factor-α (TNF-α), interleukin 1β, and interleukin 6 (IL-6). Leptin, a recently identified molecule involved in inflammatory processes, body weight, and sleep, also was elevated in PPS. The expectation was that MS, with abundant evidence for a role of active inflammation in causing these symptoms, would be associated with considerably elevated inflammatory markers, compared with PPS and normal controls.

The results of these studies were quite unexpected. The inflammatory markers were elevated in both MS and PPS patients, compared with normal controls. In a recent paper by a group of investigators from McGill University, Montreal, some of these intriguing results are explained in more detail (J. Neurol. Sci. 2008;271:80-6).

The authors examined 51 postpoliomylitis syndrome patients and a control group of 31 normal, age-matched, local volunteers. The participants had measurements taken of their serum levels of inflammatory markers, fatigue, muscle pain, and strength, as well as disease duration and joint pain.

The authors found that levels of TNF-α, IL-6 and leptin, specifically, were elevated in the patients with PPS, compared with the normal controls. Additionally, TNF-α was correlated with muscle pain. Dr. Daría A. Trojan, one of the senior authors of this study, is a physiatrist who first began seeing PPS patients during her fellowship under Dr. Neal Cashman and has continued as a staff physician in the PPS clinic at the Montreal Neurological Institute. Dr. Trojan pointed out that a prospective study is needed to confirm and extend these results and that they may provide support for a trial of immunomodulating agents in this disease.

While it is too early to state whether these findings have implications for amyotrophic lateral sclerosis, these results document an inflammatory state in one form of motor neuron disease, albeit a much more slowly progressive one.

Dr. Tselis is an associate professor of neurology at Wayne State University, Detroit. He is the book reviews editor for the Journal of the Neurological Sciences.

HIGHLIGHTS FROM THE JOURNAL OF THE NEUROLOGICAL SCIENCES

Three Inflammatory Markers Elevated in PPS

BY ALEX TSELIS, M.D. PH.D.

Although the heart normally autoregulates using Starling’s law and its own endogenous nervous system, it is potentially under the influence of the rest of the nervous system. In an autonomic storm, for example, dramatic alterations in cardiac rhythm and function may occur.

As long as the ECG has been in use, clinicians have recognized that catastrophic neurological or psychiatric events may alter the appearance of the ECG. This observation was made by Dr. Harold Levine at the old Peter Bent Brigham Hospital, Boston, and was probably named “cerebral T waves” by the renowned and creative cardiologist Dr. George Burch of Tulane University in New Orleans.

However, the cause was presaged by Dr. Walter Bradford Cannon, the distinguished Harvard Medical School physiologist. In 1942, he wrote his memorable paper, “Voodoo Death,” in which he recounted many descriptions of the phenomenon of being literally frightened to death that he had gathered from the anthropological literature. Dr. Cannon hypothesized that these deaths were caused by an intense automobile of escape or control, or by physiological perturbations.

The cardiac pathology is characteristic of takotsubo-like cardiomyopathy. Causes of neuocardiac dysregulation are subarachnoid hemorrhage, seizures from the insula, and intense psychological stress. The most typical ECG alterations involve repolarization, with deeply inverted T waves seen prominently in the anterior, inferior, and lateral precordial leads; many other ECG abnormalities have been recorded, including heart block, bradycardia, asystole, ventricular tachycardia, alteration in the shape and width of the QRS complex, and U waves.

In recent years, thanks to the availability of echocardiography, it has been recognized that in extreme circumstances of acute stress, an acute cardiomyopathy—characterized by a disproportionate hypokinesia of the left ventricular apex—may develop. This pattern of left ventricular apical ballooning, as seen by echocardiography or contrast ventriculography, has been likened to the shape of a Japanese octopus trapping pot called the takotsubo; hence, the name takotsubo-like cardiomyopathy.

Patients with the takotsubo-like cardiomyopathy (usually older women) have suffered a recent psychological stressor resulting in acute heart failure and chest pain; they demonstrate the typical left ventricular apical ballooning pattern seen on the echocardiogram. Such patients usually have a cardiac enzyme leak (for example, troponin), indicating that this process causes authentic cardiac damage.

The cardiologic pathway is characteristic and known as contraction band necrosis. This process is probably caused by Cannon’s sympathetic storm with release of catecholamines directly into the endocardium. The pattern of dysfunction reflects the density of catecholamine receptors in the various parts of the heart. At a cellular level, the catecholamines, released from sympathetic nerve terminals, open a receptor-operated calcium channel, which leads to the ECG changes, followed by calcium-mediated free radical damage to cardiomyocytes.

Takotsubo-like cardiomyopathy is potentially completely reversible and provided a malignant arrhythmia does not intervene. The appearance of ventricular tachycardia in one patient, induced by discussing a stressful event, is illustrated above, at right.

It is likely that neuocardiac damage falls on a continuum, with benign alterations of the ECG on the mild end of the spectrum and takotsubo-like cardiomyopathy on the severe. Similar mechanisms may well play an important role in many related phenomena, such as sudden unexpected death in epilepsy; sudden unexpected nocturnal death syndrome; sudden infant death syndrome; cardiac arrhythmias associated with epileptic seizures; insular infarcts and intracerebral hemorrhage; sudden death associated with natural catastrophes (such as earthquake); death and cardiac problems after man-made disasters (the Sept. 11 attacks in New York); and cardiac events in association with emotional excitement (the increased rate of cardiac events in Germany during the World Cup matches on days when the German team was playing).

It is important for neurologists to be aware of the neuocardiac connection. It may be possible to prevent such problems in high-risk patients with the use of benzodiazepines, β-blockers, calcium channel blockers, and free radical scavengers.

Dr. Tselis is an associate professor of neurology at Wayne State University, Detroit. He is the book reviews editor for the Journal of the Neurological Sciences.

NEUROLOGIC PEARL

Cerebral T Waves and Takotsubo-Like Cardiomyopathy

BY MARTIN A. SAMUELS, M.D.

Although the heart normally autoregulates using Starling’s law and its own endogenous nervous system, it is potentially under the influence of the rest of the nervous system. In an autonomic storm, for example, dramatic alterations in cardiac rhythm and function may occur.

As long as the ECG has been in use, clinicians have recognized that catastrophic neurological or psychiatric events may alter the appearance of the ECG. This observation was made by Dr. Harold Levine at the old Peter Bent Brigham Hospital, Boston, and was probably named “cerebral T waves” by the renowned and creative cardiologist Dr. George Burch of Tulane University in New Orleans.

However, the cause was presaged by Dr. Walter Bradford Cannon, the distinguished Harvard Medical School physiologist. In 1942, he wrote his memorable paper, “Voodoo Death,” in which he recounted many descriptions of the phenomenon of being literally frightened to death that he had gathered from the anthropological literature. Dr. Cannon hypothesized that these deaths were caused by an intense automo-
Site visit to be carried out.

Please vote for Morocco

Marrakesh

Morocco, North Africa
For the World Congress of Neurology, 2011

The Moroccan Society of Neurology has great pleasure to invite you to consider Marrakesh, Morocco as the Host City for the World Congress of Neurology 2011.

Why would you choose Marrakesh?

-Easy Access: Morocco is a frontier between Africa and Europe, and Marrakesh is only three hours from many African and European capitals.

-Modern Congress Facilities: "Le Palais des Congrès", an International Center for Exhibition, provides all necessary technical background for organizing a successful meeting. It already hosted several large medical conferences: the World Congress of Neurological Surgery (2005) and the International Congress of Radiology (2008).

-History and Culture: In Marrakesh you can meet 1000 years of history at every corner of its Medina (Old city) and follow the steps of Avicenna and Maimonides, masters of medicine and philosophy.

-Hospitality and Living Art: In Marrakesh you can find the legendary hospitality of Morocco, its original crafts and one of the most famous gastronomy of the world.

-For all these appealing reasons, we invite you to vote for Marrakesh, a wonderful and safe city with a secure environment.

We look forward to welcoming all our colleagues to the World Congress of Neurology in 2011, an event which will be exceptional in its scientific content and organization, let alone the wonderful city of Marrakesh with all its magnificence.

The vote for the city that will host the World Congress in 2011 will be taken by national delegates during the Asian-Oceaniaan Congress of Neurology in October 2008 in New Delhi, India.

Please ask your delegate to vote for Marrakesh, Morocco.

For further information on the Moroccan Society of Neurology’s bid to host the World Congress of Neurology, 2011, please visit our website at www.MarrakeshWCN2011.com
Site visit to be carried out.
The Practice of Neurology in Mongolia

Training has been cut from 2 years to 1 year; residents are unassalaried; exams are not standardized.

BY SARANGEREL JAMBAL, M.D.

I am glad to have the great opportunity to write about the practice of neurology in my country, Mongolia. Let’s begin with its interesting history.

The practice of neurology got its start in Mongolia in 1939 with the establishment of 10 neurologic beds in the Central Hospital by the Russian neurologist Dr. N.Ya. Semyonova.

In 1947, a neurologist who was a faculty member of Leningrad Medical High School, Dr. G.Ya. Liberson, founded the neurology department in the medical faculty of Mongolian State University.

In the 1970s and 1980s, the first scientific research works were done in the field of neuroinfections (neurobacterias, epidemic encephalitis, polyneuritis) according to the social and ecological requirements of the country at that time (G. Lodon, D. Rawdando). At this time, the second adult neurology ward and the first one for children were launched, the first department of neurosurgery was founded, and the use of new diagnostic methods such as EEG and pneumonoecephalography (PEG) was adopted (Tsagaankhuu G et al. 2007).

In the 1970s and 1980s, the neurologic service in the country expanded to become an independent medical branch and improved the quality of neurologic care by increasing the number of neurologists (about 100) and founding neurologic wards in all province hospitals (each with about 20 beds and two neurologists).

At that time, the Mongolian neurologists were supported mostly from Ukrainian neurologists (E.P. Zagorowsky), and initiated their methods (Tsagaankhuu G et al. 2007).

The political changes in the late 1980s and early 1990s with the end of the Cold War smashed completely the old social-ist political system in the country.

While the loss of contact with Russian neurologists was keenly felt, one benefit was that Mongolian neurology was offered new chances to develop professional relationships with neurologists from other countries. In 2002, the Mongolian neurologic association “Monneurology” was founded, and it became a member of the WFN.

Also in 2002 the first international epilepsy seminar workshop was held with the support of the ASIAN Epilepsy Society. In 2006, the first international neurologic INFO Seminar was held in Ulaanbaatar, with the initiation of WFN and international participation opening new opportunities in foreign relations.

Today, the neurologic service in Mongolia consists of more than 20 medical doctors with PHNs and about 200 neurologists.

The number of neurologists in Mongolia is 7.8 per 100,000 people, which is a very high proportion compared to most other countries of the world.

About 60% of all Mongolian neurologists are working in the capital Ulaanbaatar, where more than a half of the population is concentrated (1.5 million of Mongolia’s entire population of 2.5 million people live in the capital city).

The number of neurologic beds is about 900 in the whole country, about 3.7 per 10,000 (Baasanjav D et al., 2006).

In recent years, neurologic research has focused on the epidemiology of most common neurologic disorders such as stroke, epilepsy, neurodegenerative and neuromuscular diseases.

The stroke epidemiology study revealed that there is a high percentage of the hemorrhagic type (about 50% vs. about 40% ischemic stroke and 10% subarachnoid hemorrhage), which requires special attention to prevention (Baasanjav D et al., 1999).

Also, several research studies were done on epilepsy, which is a significant cause of disability in Mongolia. But because of flaws in the design of these studies, their findings do not distinguish various exact types of epilepsy, limiting the studies’ usefulness.

From 1997 to 2000, the neurogenetic group from the U.S. National Institutes of Health, which was led by Dr. Lev Goldfarb, collaborated with the Mongolian Medical Research Institute to undertake research on neuroepidemiologic diseases in Mongolia.

The investigators found a high prevalence of certain neurogenetic disorders associated with certain regions of the country. For example, Charcot Marie Tooth (CMT) type 2 disease was prevalent in Arkhangai province, where there were about 100 cases in the population of 97,000.

Other disorders with a geographic prevalence included the observations of CMT type 1 disease in Khulusair, Dornod province; hereditary spastic paraplegia in the Khowd and Uvs provinces; and familial oligophrenia in Dornod province.

Cases of myotonic dystrophy were registered in nearly all provinces.

Not all provinces were involved in the epidemiologic research, but the fact that hereditary neurologic disorders occur in high prevalence within a country that has small population deserves special clinical attention.

Despite the high number of specialists and neurology beds in Mongolia, there are many problems resulting from the difficult current socioeconomic situation in the country.

There is insufficient medical and social insurance, both of which were newly founded in Mongolia only 10 years ago.

The low level of knowledge and outdated training methods of some neurologists are leading to misdiagnosis and treatment failures in many cases.

Neurologic residency training lasted for 2 years during the period from 1997 to 2001 and included psychiatry training. Since 2002, the training program has been shortened to 1 year.

The quality of clinical training is limited by numerous problems: Neurology residents must often pay for part or all of their training costs; they lack proper work places; and they are unassalaried.

In most respects, neurology residency training in Mongolia lacks standards, adequate supervision, and standardized examinations.

Established neurologists require but usually do not receive training in order to bring them up to date with the massive increase in new diagnostic methods in recent years.

Without such training they risk misinterpreting test results.

Pharmaceutical companies are not inclined to introduce their new drugs in Mongolia because our small population means fewer sales for them.

Some important medical branches in neurology, such as neurorehabilitation, are still nonexistent in the country. Instead, this type of treatment has been replaced by minimally effective traditional treatment methods.

To become familiar with the latest versions of diagnostic and treatment research, the neurologic consultant of the Ministry of Health began to implement a CME program for neurologists.

The younger generation of neurologists eagerly participates in these CME opportunities. All recent information must be translated into Mongolian because knowledge of the English language is not widespread.

We are also working on setting and renewing the special standards and guidelines for neurologic diseases which can be generally diagnosed and treated.

Mongolia is located in the center of the Asian continent, is bordered by Russia and China, and, belongs neither among the Southeast, Pacific, nor Middle East countries.

The climate is dry and cold. Mongolia has its own culture and language, and a population with a nomadic style of life that has existed for thousands of years.

We hope our geographical, cultural, and climatic conditions will not be a barrier for expanding our foreign relationships, and we continue to strive to improve our neurologic services in Mongolia.
2008
9th International Conference on Alzheimer’s Disease Drug Discovery
October 6-7, 2008
New York, USA
www.worldeventsforum.com/add/9thadd/index.html

36th Annual Meeting of the International Society for Paediatric Neurosurgery (ISPN)
October 12-16, 2008
Cape Town, South Africa
www.ispn2008.org

6th International Congress on Mental Dysfunctions & Other Nonmotor Features in Disease
October 16-19, 2008
Dresden, Germany
www.kenes.com/pdment2008

Dystonia Europe 2008
October 17-19, 2008
Hamburg, Germany
www.dystonia-europe-2008.org

46th Annual Meeting of the Academy of Aphasia
October 19-21, 2008
Turku, Finland
www.academyofaphasia.org

2nd World Congress on Controversies in Neurology (CONy)
October 23-26, 2008
Athens, Greece
www.conmced.com/cony/2008

October 23-26, 2008
New Delhi, India
www.acn2008.com

9th International Congress on Neuroimmunology
October 26-30, 2008
Forth Worth, Tex., USA
www.ism2008.org

19th International Symposium on ALS/MND
November 3-5, 2008
Birmingham, England
www.mndassociation.org/research/for_researchers/international_symposium/index.html

European Charcot Foundation Symposium 2008: Multiple Sclerosis and Gender
November 13-15, 2008
Taormina, Italy

1st International Headache Summit
November 14-17, 2008
Tel Aviv, Israel
www.headache-summit.com

Neuroscience 2008
November 15-19, 2008
Washington, D.C., USA
www.sfn.org/am2008

SEPTEMBER 2008 • WWW.WFNEUROLOGY.ORG
WORLD NEUROLOGY • 13

Calendar of International Events

2009
17th Annual International Neuropsychological Society Meeting
February 11-14, 2009
Atlanta, Ga., USA
www.the-tns.org/meetings

2nd Asian and Oceanian Parkinson Disease and Movement Disorder Congress
February 15-17, 2009
New Delhi, India
www.aprncindia.com

5th Annual Update Symposium Series on Clinical Neurology & Neurophysiology
February 16-17, 2009
Tel Aviv, Israel
www.neurophysiology-symposium.com

2nd European Brain Policy Forum
February 25-26, 2009
Brussels, Belgium
www.kenes.com/ebpf2009

9th International Conference on Alzheimer’s and Parkinson’s Diseases: Advances, Concepts and New Challenges
March 11-15, 2009
Prague, Czech Republic
www.kenes.com/adp

5th World Congress of the World Institute of Pain
March 13-16, 2009
New York, USA
www.kenes.com/wip

24th Conference of Alzheimer’s Disease International
March 21-28, 2009
Singapore
www.adi2009.org

2nd International Symposium on Psychogenic Movement Disorders and Other Conversion Disorders
April 2-4, 2009
Washington, D.C., USA
www.movementdisorders.org/education/pmd

61st Annual Meeting of the American Academy of Neurology
April 23-May 2, 2009
Seattle, Wash., USA
www.aan.com

19th World Congress of Neurology
October 24-30, 2009
Bangkok, Thailand
www.wcn2009bangkok.com

Before the Drug is Approved...

Before the Guideline is Issued...

Before the Research is Published...

You Read It First In
Memoir: ‘Seizing Opportunities’

BY JOHN WALTON, M.D.

Striking Opportunities: ‘The Reminiscences of a Physician’ (Wealdare, England: Memoir Club 2008) is a charming and well-written memoir from Dr. Richard Godwin-Austen, former Secretary-Treasurer General of the WFN.

Richard came from a distinguished, if in some ways eccentric, family. Among his forbears were knights, generals, and other individuals of distinction. Not least was his great uncle, Henry Haversham Godwin-Austen, who discovered the second highest mountain of the world, which in my childhood was known as Mount Godwin-Austen, though it is now generally referred to as K2. The name Godwin-Austen still identifies a glacier in the Himalayas.

After Dr. Godwin-Austen’s schooling, training, and subsequent career in London and Devon, he eventually arrived in Nottingham (England), as a consultant neurologist. He served as president of the Association of British Neurologists in addition to his 8-year-long post at the WFN, which he served with distinction. Among the anecdotes that enliven the text is the story of how the now-famous British film actor Hugh Grant, in his earlier, formative years, was a lodger in the Godwin-Austen household. Another high-light is the author’s experiences during a 3-month stay in Baghdad, when he was called to consult with the then-president of Iraq, shortly before Saddam Hussein assumed office.

More personal episodes from Dr. Godwin-Austen’s life are also faithfully recounted, including his early courtship of Susan Toller. That relationship ended quite poignant. His advances, through a mutual friend, toward the woman who was to become his second wife led to an- other happy marriage, which also is recounted in great detail. Touchingly, Dr. Godwin-Austen has dedicated this volume to both of his wives.

Medical autobiography is a specialized art form, but this book will be read with pleasure by many of Dr. Godwin-Austen’s friends, admirers, and others as well, and is a delightful example of the genre.

John Walton (Lord Walton of Detchant) is the author of several books and a past president of the WFN.

Dr. Richard Godwin-Austen, former Secretary-Treasurer General of the WFN.

BOOKS TO CONSIDER

Text: ‘Cancer Neurology In Clinical Practice’

BY MAJEJ M. MRUGALA, M.D., PH.D.

welcomed the second edition of “Cancer Neurology in Clinical Practice” with great joy and expectation. This volume is already a classic in neuro-oncology literature. This book covers a broad spectrum of neuro-oncology topics that were or-ganized in an easy-to-follow manner, and many of the authors are experts in their respective fields.

This book will be wel-comed by neuro-oncology fellows who, in the past, lacked a single compendi-um that would guide them in their studies of the field. Although we do have nu-merous excellent resources in neuro-oncology, many of them focus on intracranial disease and primary brain tumors. Only a few address neurologic com-plications of cancer and give advice on day-to-day management of neuro-oncology patients. “Cancer Neurology in Clinical Practice” (New York: Humana Press, 2008) fills that void; it is a comprehensive, highly special-ized yet practical textbook. Its style could be compared with “Office Prac-tice of Neurology” from Samuels and Felke that many of you have on your bookshelves.

Who else will embrace this book? Most certainly savvy neurology resi-dents and medical oncology fellows, because this tome is saturated with useful clinical information. It also be-ongs on the shelf of the general neu-rologist who frequently takes care of cancer patients and needs a quick, readable, and practical reference. Even well-seasoned neuro-oncologists will likely refer to this text for prob-lems less frequently encountered.

The first half covers diagnostic tools and symptoms of cancer neurology, in-cluding chapters on seizures, headache, mental status changes, cancer pain, and steroid therapy. These chapters should be required reading for all physi-cians who care for cancer patients. There are dedicated chapters dealing with complications of cancer therapy, including those associated with newer treatments as well as older and rarer ones. The book closes with 13 chapters on neuro-oncologic complications tied to spe-cific malignancies.

One would like to read this volume over to cov-er it might be a challenge, though, for most of us who carry a significant clin-ical workload. But even reading it “chunk by chunk,” highlighting im-portant information and frequently re-turning to it, would be immensely useful. The layout of each chapter is very clear and intuitive, and one can find the information one needs in a few turns of the page. Tables are clear and not overcrowded (kudos to the graphics editors!), images are of su-perb quality, and references are easy to read. Overall, this book is a great ad-dition to any professional library.

Dr. Mrugala is assistant professor in the division of neuro-oncology in the department of neurology and neurosurgery at the University of Washington, Seattle.

A Track Record of Extending, Connecting, Exchanging

BASED ON AN INTERVIEW WITH RAAD SHAKIR, M.D. Secretary-Treasurer General

It is almost 40 years since Dr. Raad Shakir, the WFN’s Secretary-Treasurer General, received his medical de-gree from the University of Baghdad. Since then, his postgraduate pursuits and his many clinical, research, and academic endeavors have taken him to the United Kingdom, the Middle East, South East Asia, Africa, and the United States.

Members are familiar with Dr. Shakir’s decades of service to the WFN. What they may not know are the years of training and re-search that prepared him for that task.

Over his career, his chief research area has been tropical neurology. One of his earlier WFN posts was as secretary and then chairman of its tropical neurology research group, then as secretary of the research group’s Asian division.

Building on his experience with Asia, Dr. Shakir worked with Dr. Johan Aarli, WFN president, to bring the Chi-nese Neurological Society to the membership of the WFN. Soon after he was instrumental in establishing the Africa Committee at a stakeholders’ meeting in Stellenbosch, South Africa. With the committee in place, the WFN can now work with African entities to provide them with support and training.

Dr. Shakir’s close work with these and other international organizations, together with his established expertise in central nervous system infections, culminated in his selection as chair-man of the neuroscience working group for the 11th edition of the World Health Organiza-tion’s International Classification of Diseases.

The excellence of Dr. Shakir’s medical ed-ucation and neurology training prepared him well for the leadership role he has played so well for WFN and other organizations. After receiving his medical degree in Baghdad, Dr. Shakir trained in neurology at the Institute of Neurological Sciences in Glasgow, Scotland. In 1980, he moved to Kuwait, where he was a consultant neurologist and associate pro-fessor then academic dean at the University of Kuwait Medical School in Kuwait City. During that time, he spent a year at Harvard Medical School in Boston as a lecturer in the department of neurology.

In 1991, Dr. Shakir became consultant neurologist and clinical lecturer at the University of Newcastle Upon Tyne. Since 1993, he has been a consulting neurologist at London’s Charing Cross Hospital and Central Mid-dlessex Hospital and is currently head of the department and chief of service of the neurosciences/head and neck directorate at Imperial College, also in London.

Dr. Shakir is a member of the Royal Colleges of Physi-cians and a fellow of the Royal Society of Medicine and the Royal Society of Tropical Medicine and Hygiene. He has served as the editor for three journals—Medical Prin-ciples and Practice, Journal of Tropical and Geographical Neurology, and Neurology, Neurosurgery and Psychiatry—and as author of numerous papers and book chap ters, as well Tropical Neurology (published by W.B. Saun-ders; first edition, 1999, and second edition, 2003).

In addition to the WFN, Dr. Shakir has also maintained a longtime association with the International League Against Epilepsy, with stints as treasurer of the league’s commission on tropical diseases and as a member of its education and public relations committees.
A. Martin Halliday, M.D., 1926-2008

BY S. J. JONES, M. D.

Dr. Martin Halliday died March 18, 2008, at the age of 81.

Dr. Halliday’s outstanding career in neurology and clinical neurophysiology spanned the exciting decades from 1950 to 1990, when advances in the specialty came frequently. His pioneering enthusiasm for computer technology placed him at the forefront of research into sensory evoked potentials (EPs), arguably the first noninvasive “window” onto specific processes of the human brain.

While deeply interested in all aspects of brain function, Dr. Halliday never forgot that the chief virtue of EPs consisted in what they could contribute to clinical neurology.

Dr. Halliday showed academic promise from an early age and the entrance examinations for both Oxford and Cambridge universities at 15 years old was deemed too young to attend.

By the age of 20, he had graduated with first-class honors from the University of Glasgow.

His subsequent medical training was followed by an obligatory period of military service, during which his aptitude for research became apparent. His work on the effect of sleep deprivation on hand tremor was prompted by the need to quantify and minimize the risks of pilot fatigue during the Berlin airlift.

This led to an invitation from Dr. Arnold Carmichael to join the newly established Medical Research Council unit at the National Hospital for Nervous Diseases in London.

Dr. Halliday’s subsequent exposure of EP research followed the lead of his colleague Dr. George Dawson, who had shown that consistent stimulus-related potentials could be extracted from the electroencephalogram (EEG) by means of analog signal-averaging. In 1961, with the inestimable technical assistance of Dawson’s electronic wizard, Jack Pitman, Dr. Halliday introduced the first generation of digital signal-averaging devices to clinical neurophysiology. The nucleus of his team was completed by his research assistant, Dr. Lisl.

Dr. Halliday’s most significant clinical breakthrough came in the early 1970s, when his work with Dr. Ian McDonald and Dr. Joan Muslin showed for the first time that visual EPs could be used as a highly sensitive diagnostic test in patients suspected of having optic neuritis or multiple sclerosis (MS).

It was this discovery that led directly to the adoption of similar methods in neurodiagnostic departments all over the world, and to an explosion of visual EP (VEP) research. Subsequent papers from Dr. Halliday’s lab refined the method and quantified the diagnostic power of VEPs in MS and other demyelinating diseases, demonstrating the complementarity of VEP methodology with imaging techniques such as magnetic resonance imaging.

It is essentially the same method that remains in use today, and is still regarded as the benchmark test for pathophysiological studies of optic nerve demyelination. Published at the end of his career, the second edition of Dr. Halliday’s largely self-penned reference work, “Evoked Potentials in Clinical Medicine,” seems unlikely ever to be superseded.

One of Dr. Halliday’s many virtues was his insistence on due credit being accorded all his collaborators, including the most junior. A kind friend as well as an inspiring chief, Dr. Halliday was a cultured and humane man whose extra-mural interests extended to the arts (especially music) and philosophy.

Perhaps his least-known contribution was in the promotion of Advaita, a Hindu philosophical school that addresses the ultimate truth underlying the religions of the world.

His third book in this area, “The Spiritual Awakening of Science,” is soon to be published posthumously.

Dr. Jones is Honorary Consultant, National Hospital for Neurology and Neurosurgery, London.
Welcome to the 19th World Congress of Neurology
October 24th-30th, 2009
Bangkok, Thailand

“Innovation in Neurology”

“Deadline for abstract submission is March 31st, 2009. More information regarding abstract submission and guidelines will be announced on the website: www.wcn2009bangkok.com”