Epilepsy awareness and screening services are slowly but surely reaching the most remote Indian villages, with the help of a mobile “train hospital” known as the Lifeline Express. Ever heard of Piar- doba, Dabra, or Gauriganj? They are small villages in the states of West Bengal, Mad- hya Pradesh, and Uttar Pradesh, respectively, and are among some of the stops I have made on the LLE in recent months.

In addition to diagnosing and treating persons with epilepsy, our team collects data on epilepsy from each region, with a view to building a database of disease prevalence and distribution, patient demographics, and availability of services, which we plan to share with the government to raise its awareness of the patients’ unmet needs and possibly influence policy decisions. In general, health-related data in India are sparse and large epidemiologic studies on active epilepsy are not available.

There is also a strong educative component to the project, through which we hope to build a network of caregivers comprising local doctors, nurses, elders, and family members in each region we visit and to mit- igate the stigma associated with the disease.

About 8-10 people out of 1,000 in India suffer from epilepsy. With the country’s population now exceeding 1 billion, that means there are about 10 million persons with epilep- side risk data could guide preventions, global reduction

Ten distinct risk factors account for about 90% of global stroke risk, according to findings from the first phase of the multinational, case-controlled INTERSTROKE study, which has enrolled 6,000 patients and controls thus far.

The findings suggest that the stroke burden could be sub- stantially reduced by targeted interventions to address the identified risk factors.

Five of the risk factors found to be significantly associated with stroke risk accounted for about 80% of the population-attributable risk for all stroke. These were self-reported hypertension, current smoking, abdominal obesity (highest vs. lowest tertile of waist:hip ra- tio), diet (highest vs. lowest diet risk score), and regular physical activity. These comparisons yielded odds ratios of 2.64, 2.09, 1.65, 1.35, and 0.69, respectively.

The addition of another five significant risk factors identified in this study further increased the population-attributable risk for all stroke associated with these risk factors to 90%. These additional risk factors—diabetes mellitus, alcohol intake of more than 30 drinks a month or binge drinking, psychosocial stress/ depression, cardiac causes, and the ratio of apolipoproteins B to A-I—generally increased the odds of stroke by a smaller amount than did the other risk factors. The comparisons gen- erated odds ratios of 1.36, 1.51, 1.30, 1.30/1.35, 2.38, and 1.89, respectively.

All the risk factors were sig- nificantly associated with ischemic stroke, whereas hypertension, smoking, waist:hip ra- tio, diet, and alcohol intake also were significantly associated with intracerebral hemorrhagic stroke. Dr. Martin J. O’Donnell of McMaster University, Hamil- ton, Ont., and his colleagues re- ported (Lancet 2010 June 18 [doi:10.1016/S0140-6736(10)]).
History and Exchange: Creating A Global Neurological Village

We all know the famous quotation from George Santayana, “Those who don’t know the past are condemned to repeat it” (The Life of Reason, Vol. 1, 1905). For researchers, it could be rephrased as “Those who don’t know the literature might find that their new discovery has already been published”—the point being that history is useful, not only interesting.

In this issue of WORLD NEUROLOGY, Dr. Peter J. Koehler reviews the new volume, History of Neurology, in the large series, Handbook of Clinical Neurology (p. 14), and writes the first of an occasional column on neurological history and in particular, the importance of international exchange within the specialty in the early 20th century (p. 4).

Such exchange has always been valuable and is likely more important than ever these days.

New information about the specialty is exchanged using new methods of diagnosis and treatment are being developed in various places around the world, and it might well be useful for persons seeking that knowledge to visit the countries or institutions where it originated. In recent years, for example, many neurologists and neurosurgeons have visited Prof. Alim-Louis Benabid at Joseph Fourier University in Grenoble, France, to learn about deep brain stimulation as a therapy for Parkinson’s disease. A disease can arise in one region and spread to others; HIV is an obvious example, as is West Nile virus. Or, patients might become infected with a disease while in one country, hop onto a plane, and come down with the disease in a different country.

Such scenarios underscore the importance of having a global view of the disease, and as a global spread of neurological expertise, both of which can be promoted by education efforts in developing countries by experts from developed countries. The story on page 10 about the Honduran residency program is a great example of this.

Of course, the World Federation of Neurology (WFN) plays a pivotal role in international exchange, with its many programs, publications (including this newsletter), and biennial World Congresses. Some of its national and regional membership societies are now also reaching out internationally, such as the American Academy of Neurology (p. 6) and the European Federation of Neurological Societies, which has worked with the Federation and other organizations on conducting teaching and continuing medical education courses in Africa (WORLD NEUROLOGY, August 2009; and February and April 2010). The WFN plays a crucial role in coordinating these activities.

WFN Junior Travelling Fellowship Awards

For 18 years, the World Federation of Neurology has been supporting young neurologists from developing countries to attend international conferences through its annual Junior Travelling Fellowship program. Initially it did so with support from the pharmaceutical industry—GlaxoSmithKline PLC—and we gratefully took delivery of the first check for £10,000 from the company in June 1992. That helped 12 doctors, from as far afield as Brazil and Peru in the West to India and Thailand in the East, to travel to meetings that year.

So began a program that over the next 2 decades has grown into a program that the WFN is eager to address in the future with further assistance; because these days, the Federation finances up to 20 awards annually from its own resources, each worth £1,000.

This year’s winners represent an encouraging cross-section of the young talent to be found in our member nations, and the following list illustrates well the continuing importance of this longstanding and key part of the WFN’s contribution to global neurological education.

12th European Conference on Epilepsy and Society, Aug. 25-27, Porto, Portugal: Dr. Birnus A. Ezcala-Aldakibe (Nigeria)

14th Congress of the European Federation of Neurological Societies, Sept. 25-28, Geneva: Dr. Ziad Adwan (Syria); Dr. Gayane Aghakhanyan (Armenia); Dr. Sumono Taofiki Ajao (Nigeria); Dr. Suman S. Kushwaha (India); Dr. Maryam Mountassir (Morocco); Dr. Sopio Sopromadze (Georgia); Dr. Vinod Tiwari (India); Dr. Ashraf Valapalli (India)

7th World Stroke Congress, Oct. 13-16, Seoul, Korea: Dr. Souhail Al Faqih (Syria); Dr. Akshay Anand (India); Dr. Bertha Ekeh (Nigeria); Dr. Kolawole W. Wahab (Nigeria); Dr. Edward Komolafe (Nigeria)

2nd European Headache and Migraine Trust International Congress, Oct. 28-31, Nice, France: Dr. Luis Rafael Moscote Salazar (Colombia); Dr. Delgermaa Tsagaankhuu (Mongolia)

4th World Congress on Controversies in Neurology, Oct. 28-31, Barcelona: Dr. Irma Khachidze (Georgia)

40th Annual Meeting of the Society of Neurosciences, Nov. 13-17, San Diego, Calif., USA: Dr. Anurag Kuhl (India)
A Focus on Partnering and Prioritizing

BY VLADIMIR HACHINSKI, M.D.

The World Federation of Neurology aspires to lead the battle against diseases of the brain, nerves, and muscles and to promote brain health globally. It is well positioned to achieve that goal, with its 110 member societies representing the majority of the world’s neurologists and its recognizable name and good relationship with key organizations such as the International Brain Research Organization and the World Health Organization.

The relationship with the WHO is largely a result of the efforts of my predecessor, Prof. Johann A. Aas, who played an important role in the publication of two influential WHO books, Neurology Atlas 2004 and Neurological Disorders: Public Health Challenges.

That close relationship with the WHO continues through our Secretary-Treasurer General, Dr. Raad Shakir, chair of the organization’s Expert Committee advising on the revision of the International Classification of Diseases 10. Dr. Shakir and Dr. Shokor Saeena, head of mental health and substance abuse at the WHO, will convene a session on the revision process at the 20th World Neurology Congress in Marrakesh, Morocco, next year (Nov. 12-17).

The Congress, whose theme is “Africa, for Africa,” will be the first in our cycle of every 2 rather than 4 years, an outgrowth of our effort to support regional and national societies and provide members with more frequent opportunities for learning and interacting in places that are more easily accessible and affordable for some of our members.

The WFN’s greatest asset is the large number of neurologists who are willing to do international work, exchange ideas, and contribute to the cause of preventing, delaying, or vanquishing diseases of the nervous system in our patients. Neurologists from different countries have much to learn from each other.

Knowledge accrues in pieces, but it is understood in patterns. The WFN has the opportunity to develop integrated approaches from the proliferating fragments of subspecialization and to begin evaluating and prioritizing knowledge that can be applied with the greatest efficacy.

Neurologists with a special interest are well served by their subspecialty societies, but they need a broader understanding of neurology to be able to perform at a high level. Our Congresses offer members a wonderful opportunity to update their knowledge of general neurology. We have programs for undergraduates, programs for residents, continuing medical education, and neurology for nonneurologists and other health professionals.

In addition, we offer Junior Travelling Fellowships to young neurologists and we are looking at the possibility of a comprehensive program in travel with the creation of training centers. The WFN Research Groups also continue to sponsor important international conferences, organize educational programs in developing countries, and promote the sharing of new ideas and projects among neurologists around the world.

The WFN has been very active in education and it is partnering with the American Academy of Neurology in offering Continuum: Lifelong Learning in Neurology, a self-study continuing medical education publication, to neurologists from developing countries, and with the International Brain Research Organization and the European Federation of Neurological Societies (EFNS) in organizing teaching courses.

Our progress in partnering has been steady and smooth, creating a perfect time to review our achievements and set out priorities for the years ahead. Consequently, the WFN is undergoing an internal review of its activities, which may be supplemented by an external review. The questions that are being asked regarding each activity are:

► What is its value?
► What is its viability? (This question points to the importance of partnering from the beginning of an activity, because we are able to offer expertise and modest resources but do not have the capacity for long-term commitments, particularly in delivery of services.)
► How will it be evaluated? (Each initiative will have specific aims and a timetable.)
► Does it fit within the WFN goal?

We are also reviewing our publications, upgrading our Web site, and looking at ways of facilitating communications among committee and task force members. A planning and priority retreat was held in London in July to compile recommendations for the WFN Council of Delegates’ meeting at the EFNS congress in Geneva (Sept. 25-28).

Our agenda is ambitious, but we have great assets in our members’ talent and commitment. The greatest risk is not that we will fail, but that we will fail to try.

Half of TBI Patients Develop Major Depressive Disorder

BY MARY ANN MOON

Elsevier Global Medical News

Major depressive disorder is markedly prevalent in patients with traumatic brain injury, which developed in half of patients during the year after their injury in a single-center study.

This rate is nearly 8 times higher than that in the general population, and considerably higher than the rates of 12%-42% reported in previous high-quality studies that seem to have underestimated the problem, reported Charles H. Bombardier, Ph.D., and his associates at the University of Washington and Harborview Medical Center, Seattle, USA.

Aggressive efforts are needed to educate clinicians about the importance of major depressive disorder (MDD) in this population, they noted. Moreover, it would be advisable to integrate mental health services into standard TBI care and rehabilitation programs.

The investigators studied the issue because psychological impairments after TBI are significant causes of disability, yet the rates of MDD in this setting remain uncertain. More definitive studies could galvanize efforts to improve recognition and treatment of this important disorder as well.

The study enrolled consecutive patients admitted with complicated mild to severe TBI to a level 1 trauma center during 2001-2005. Most of the participants were men who had been injured in vehicular crashes and who had sustained mild injuries. They were assessed using the Patient Health Questionnaire (PHQ) depression and anxiety modules at baseline, monthly for 6 months, and bimonthly thereafter for 1 year. At 6 months, the participants were assessed using the European Quality of Life measure.

A total of 297 patients (53%) met criteria for MDD at some time during that interval, compared with 7% in the general population. In addition, the sample was characterized by high rates of depression-related factors such as alcohol dependence and other preinjury mental health diagnoses, including post-traumatic stress disorder, the authors wrote (JAMA 2010;303:1938-45).

The median duration of depression was 4 months. There was no difference in the rate of depression between patients with mild TBI and those with severe TBI.

About half of the patients who developed depression did so within 3 months of their injury, which challenges the idea that poor awareness of impairment precludes depressive reactions during the first 6 months after injury.

MDD was associated with greater difficulty with mobility, usual activities, pain or discomfort, and role functioning. It was a significant predictor of comorbid anxiety, poor self-reported health, and lower quality of life.

About 16% of the participants were depressed at the time they sustained the traumatic injury, and another 27% had a history of depression but were not depressed when injured.

The authors cited several study limitations: they said the presence or absence of MDD was based on telephone interviews using the PHQ-9, rather than more traditional diagnostic interviews such as the Structured Clinical Interview for DSM-IV Disorders (SCID-IV). They noted that the results might not be generalizable because the study was conducted at a single level I trauma center in a region where many of the patients were Medicare recipients, and their ethnic/racial diversity was somewhat limited.

The US-based National Center for Medical Rehabilitation Research and the National Institutes of Health supported the study. Dr. Bombardier reported owning stock in Pfizer Inc.

The President’s Column

BY JENNIE PONSFORD, PH.D., professor of neuropsychology at Monash University and director of the Monash Epworth Rehabilitation Research Centre at Epworth Hospital, both in Melbourne, Australia. She has no relevant disclosures.
International relationships have long played a role in medicine. As early as the 16th and 17th centuries, medical students would travel across Europe to study at important university cities such as Paris, Montpellier, and Padua to study medicine. Two well-known examples of these young peregrinati are the anatomist-pharmacists Andreas Vesalius and William Harvey.

These international relationships became even more common and widespread during colonialism. Transatlantic exchange for medical education prevailed in the 19th and 20th centuries, when, between 1870 and 1914, thousands of American students and physicians traveled to Europe, particularly Vienna and Berlin, to take medical courses and improve their scientific skills. However, between the two world wars, the direction of exchange for purposes of medical education gradually reversed, as increasing numbers of European physicians and students traveled to the United States.

The following essay—the first of an occasional series about these international exchanges—focuses on an early European-American exchange.

Dr. Koehler is a neurologist in the department of neurology at the Attrium Medical Centre, Heerlen, the Netherlands. Visit his Web site at www.neurohistory.nl.

Aafter years of neuroanatomical work at the Central Institute for Brain Research in Amsterdam, the Dutch physician Bernard Brouwer (1881-1949) was invited to deliver lectures at university clinics in the United States—first in 1926 and again in 1933.

Brouwer, who had been appointed chair of neurology at the University of Amsterdam in 1923, had studied the projection of the retinal fibers to the lateral geniculate body and occipital cortex in primates and the spinal sensory pathways, both of which were the subjects of his lectures.

On his first visit to the United States, Brouwer delivered the 17th annual Herter Lectures at the Johns Hopkins University in Baltimore. He was offered a research chair in the institution’s department of neurology but declined it, choosing to stay in Amsterdam.

He also visited several other cities in the United States, including Washington, Philadelphia, where he met Charles K. Mills; Chicago, where he met Charles Judson Herrick, who, like him, also worked on comparative anatomy; and New York, where he delivered the Harvey Lecture and met Smith Ely Jelliffe, Frederick Tilney, Bernard Sachs, Robert Foster Kennedy, and Charles L. Dana.

In San Francisco on the same tour, Brouwer delivered a lecture at the 55th annual session of the California Medical Association, where he famously criticized Henry Head’s theory of distinct pathways for protopathic and epipaptic sensibility; and in St. Louis, he was struck by the fact that women were not allowed to study at St. Louis University, in contrast to Washington University.

His final stop on the tour was Rochester, Minn., where he was impressed by the large numbers of patients. He was surprised to learn that American neurologists’ chief source of income was from private practice, because universities either did not pay a salary at all or provided only a small amount of money. He speculated that this source of income might have been the reason it was almost impossible for neurologists to perform meaningful studies in a systematic way.

However, he was impressed by the results of the brain tumor surgery performed by the pioneering neurosurgeon Harvey Cushing, and after his return to Amsterdam, he sent the Dutch surgeon Ignaz Oljenick to train under Cushing.

In 1929, a new 120-bed neurological clinic was opened in Amsterdam, which included a neurosurgical ward directed by Brouwer.

In his correspondence with the Swiss neurologist Constantin von Monakow, with whom Brouwer had worked a decade earlier, he wrote that he had found a vivid interest in neurological science everywhere he visited in the United States, and that the Americans were very competent and diligently engaged in pathologic and experimental-anatomical studies.

Brouwer had the opportunity to visit the United States again in 1933, at the invitation of the Association for Research in Nervous and Mental Disease in New York. There, he was impressed by Charles Elsberg’s achievements in brain tumor surgery and listened to Wilder Penfield’s presentation on unilateral lobotomies.

Bernard Brouwer visited university clinics in the United States in 1926 and 1933.

Brouwer also visited the experimental neurologist John Fulton, whom he had met previously at the first International Neurology Congress in Berne, Switzerland, at Fulton’s laboratory at Yale University in New Haven, Conn.

Brouwer and Fulton continued corresponding for many years and exchanged postgraduate students.

Margaret Kennard, an American who would become a pioneer in the experimental study of sparing and recovery of brain function, was one of Fulton’s students who spent several months at Brouwer’s neurological institute in Amsterdam.

In a 1934 letter to Fulton, Kennard wrote the following about her experiences at Brouwer’s Amsterdam institute: “I continue to be amazed and delighted by the clinic here. … I’ve never seen any organization where clinic and research were used so well for mutual benefit as here. I think it’s due, as Prof. Brouwer himself says, to the fact that he completely controls both.”

In addition, she wrote, “I’m impressed with the unity in time here, as well as in organization. It is quite something to follow a patient thirty years and then spend a year on the pathology as they do here.”

The last city that Brouwer visited on his second trip was Montreal, where he met Wilder Penfield and discussed the building of a new neurological and neurosurgical institute that would open in 1934.

Brouwer’s visits to the United States and the exchange of students serve as examples of shifts in international neuroscience exchange whereby the traditional German influence in Dutch neurological circles was gradually replaced by American influences.

Share your thoughts and comments on this topic by writing to us at worldneurology@com.
14TH CONGRESS OF THE EUROPEAN FEDERATION OF NEUROLOGICAL SOCIETIES
GENEVA, SWITZERLAND, SEPTEMBER 25 – 28, 2010

Don’t miss the opportunity to meet more than 5,000 neurologists and join us at the EFNS Congress in 2010.

The Preliminary Congress Programme is online now.

Register Now
For details please visit: www.efns.org/efns2010
AAN Extends Benefits Worldwide

BY HANNS LOCHMÜLLER, M.D.

The American Academy of Neurology is committed to providing its members—in the United States and internationally—with access to benefits that contribute to improving the care of patients with neurological diseases and to promoting professional, scientific, and educational excellence. Its board of directors recently reviewed the AAN’s international policy to facilitate its global training and education efforts, especially in regard to developing nations, and it routinely reviews the ways in which the academy can assist its international members in taking advantage of its numerous benefits and offers.

One outgrowth of this commitment has been the International Attendee Summit, which is held each year at the academy’s annual meeting. This year, Dr. Hanns Lochmüller, the chair of the AAN’s international subcommittee, hosted the summit at the Toronto annual meeting. AAN leaders were present to provide an overview of what the academy has to offer its international members and nonmembers and to participate in the question-and-answer session.

As in the previous 2 years, the summit was well attended by representatives from many countries, including Argentina, Australia, Bangladesh, Brazil, Canada, China, India, Nigeria, Serbia, South Africa, and the United Kingdom.

The following benefits are available to the AAN’s international members:

- A reduced dues structure for members living outside the United States and Canada in countries rated as low or low-middle income by the World Bank.
- The official peer-reviewed journal, Neurology, which publishes news about professionals in the international neurological community and includes the Neurology International Newsletter and some translated articles (www.neurology.org).
- Membership in the AAN’s listserve, which allows for those with an interest in international neurology to communicate—e-mail Lynee Koester (koester@aan.com)—for information about joining.
- The International Scholarship Award, which provides eligible international candidates the opportunity to attend the AAN’s annual meeting. It is not necessary to be a member to apply. Up to 10 scholarships have been awarded annually to applicants demonstrating financial need and interest in attending the meetings (www.aan.com/science/awards/?useaction=home.info&id=33).
- The integrated neuroscience sessions was well attended by representatives of the American Academy of Neurology and patients with neurological disorders.

The integrated neuroscience sessions was well attended by representatives of the American Academy of Neurology and patients with neurological disorders.

Calendar of International Events

2010

7th World Stroke Congress
Oct. 13-16
Seoul, Korea
www2.kenes.com/Stroke/Pages/Home.aspx

2nd European Headache and Migraine Trust International Congress
Oct. 28-31
Nice, France
www2.kenes.com/emtica/Pages/Home.aspx

14th World Pain Clinic Congress & the 1st Asian Congress on Pain
Oct. 29-Nov. 1
Beijing
www.ccwspc.org

4th World Congress on Controversies in Neurology
Oct. 28-31
Barcelona
www.comtecm.com/comy/2010/

7th International Congress on Mental Dysfunctions & Other Non-Motor Features in Parkinson's Disease
Dec. 9-12
Barcelona
www2.kenes.com/mdpd2010/Pages/Home.aspx

2011

10th International Conference on Alzheimer's & Parkinson's Diseases
March 9-13
Barcelona
www.kenes.com/adpd

World Congress on Huntington's Disease
Sept. 11-14
Melbourne
www.worldcongress-hd2011.org/

7th International Congress on Vascular Dementia
Oct. 20-23
Riga, Latvia
www2.kenes.com/Vascular2011/Pages/Home.aspx

20th World Congress of Neurology
Nov. 12-17
Marrakesh, Morocco
www2.kenes.com/wcn/Pages/Home.aspx

Protein Linked to Brain Atrophy, AD Progression

BY MARY ANN MOON
Elavser Global Medical News

Elevated plasma levels of the protein clusterin seem to correlate with the degree of brain atrophy, the severity of symptoms, and the speed of the clinical progression of Alzheimer’s disease.

Moreover, clusterin levels seem to rise well before symptom onset or amyloid-beta deposition is noted in the seemingly normal brains of older patients who go on to develop Alzheimer’s disease (AD), said Dr. Madhav Thambisetty, who was at the King’s College Institute of Psychiatry, London, where we have also demonstrated robust association with atrophy in subjects with mild cognitive impairment and AD,” Dr. Thambisetty, who is now at the National Institute of Aging, Bethesda, Md., USA, and his colleagues wrote. “These results have wider implications for the identification of other amyloid chaperone proteins in plasma, both as putative AD biomarkers as well as drug targets of disease-modifying treatments.”

The researchers used plasma proteomics to identify possible AD-associated proteins. They identified 13 spots on gel electrophoresis that correlated with hippocampal atrophy in a sample of 44 patients who had mild cognitive impairment or mild to moderate AD, then performed the same analysis in a separate sample of 51 AD patients who had either slow-progressing or fast-progressing AD. Only one protein—clusterin—was common to both groups in this discovery-phase study.

The clusterin-AD link was then confirmed in a validation cohort of 689 patients from two European studies: 464 with AD, 115 with mild cognitive impairment, and 110 normal controls. This time, they correlated clusterin levels with MR imaging showing atrophy of the entorhinal cortex, a component of the medial temporal lobe showing early pathological changes in AD. Plasma clusterin also negatively correlated with cognitive scores on the Mini Mental State Examination in a subset of 576 patients, indicating a correlation between rising clusterin and declining cognition.

Higher clusterin levels were also noted in patients with rapid AD progression than in those with slower progression. The association was observed in 344 patients who had shown accelerated cognitive decline before blood samples were obtained, and in 237 whose cognitive decline accelerated after blood samples were obtained. Thus, the association was evident retrospectively and prospectively relative to the time of blood sampling.

The researchers used data from a US longitudinal study of aging to test the hypothesis that plasma clusterin level is a marker of future AD pathology in apparently normal older adults. They found high clusterin levels predicted AD-associated changes on PET imaging as long as 10 years before changes were evident.

“This suggests that increased plasma concentrations of clusterin, even in non-demented older individuals, predicts a greater extent of fibrillary amyloid burden in the entorhinal cortex, the same region where we have also demonstrated robust association with atrophy in subjects with mild cognitive impairment and AD,” Dr. Thambisetty, who is now at the National Institute of Aging, Bethesda, Md., USA, and his colleagues wrote. “These results have wider implications for the identification of other amyloid chaperone proteins in plasma, both as putative AD biomarkers as well as drug targets of disease-modifying treatments.”

The study was funded by numerous nonprofit and government organizations in the United States, England, and Europe. Intellectual property has been registered for the use of plasma proteins, including clusterin, for use as biomarkers for AD by King’s College London and Proteome Sciences, with Dr. Thambisetty and an associate named as coinventors. One of the researchers is supported by the US National Institutes of Health and numerous companies involved in Alzheimer’s disease research.
The ultimate resources to be kept up to date on the latest research in Alzheimer’s and Parkinson’s Diseases

Official Journal of the World Federation of Neurology

www.elsevier.com/jns

Official Journal of the World Federation of Neurology Research Group on Parkinsonism and Related Disorders

www.elsevier.com/prd

For immediate access to the journal articles, visit www.sciencedirect.com!
Rural Areas Are Targeted

Epilepsy • from page 1

sy (PWE), of whom a dismal 20%-30% at best receive adequate treatment. Put another way, the treatment gap for epilepsy in India is about 70%-80%, meaning 7.8 million PWE are not being treated. There are several reasons for such a wide treatment gap. Two very important factors are the lack of awareness about epilepsy and the various societal stigmas associated with it. Another factor is a lack of easy, affordable access to care—about 70% of the population in India is rural. In addition, there are only about 1,000 neurologists in India serving a population of 1.1 billion people. About a third of them practice in six metropolitan cities: Delhi, Hyderabad, Bengaluru, Chennai, Kolkata, and Mumbai. Small cities and villages do not have practicing neurologists. Many of these neurologists are working individually to improve circumstances for PWE. However, it is important that we take our services to regions where people are the least informed about the disease and where health facilities are the most rudimentary. This is the situation in almost all Indian villages, especially in the northern and central regions—the situation is somewhat better toward the south of the country. I work on the Lifeline Express with a team of dedicated workers. We strive to educate people about epilepsy and will screen as many as 200-300 PWE at any given location. Whenever possible, we will initiate epilepsy treatment based on our clinical diagnoses. We also counsel patients and their families, provide the patients with free starter packs of 1-2 months of therapy, and try to persuade them to follow up either at the local hospital or at the All India Institute of Medical Sciences, New Delhi.

The LLE makes about 10 excursions a year, stopping for about 3 weeks at each project destination. It is run by the Impact India Foundation, a Mumbai-based nongovernmental organization that works toward reducing the incidence of curable or treatable conditions such as epilepsy, blindness, deafness, physical handicaps, and deformities. Running expenses are borne by the LLE and its sponsors. Patients do not have to pay for any services, including surgery, because physicians volunteer their time for free. I must also acknowledge here that this work would not have been possible without encouragement and support from Prof. R.C. Deka, director of the All India Institute, and Prof. Madhuri Bhardwaj, head of the institute’s neurology department; as well as the advocacy tools provided to me by the American Academy of Neurology’s Palatucci Advocacy Leadership Forum.

Our excursions are meticulously planned ahead of our arrival. As much as is possible, we try to enlist support from the local administrations. We will send out information notifying people we will be coming to their area and informing them of the dates earmarked for seeing patients with certain conditions. For example, all cataract surgery will be done on particular days, and all PWE will be seen on different days. This helps streamline our efforts and means we can get a lot done in a relatively short time. We generally work 12-14 hours a day during the 2-3 days we spend at a project. The LWE and their accompanying caregivers or family members are divided into smaller groups of 15-20 for orientation and awareness sessions. We provide information about epilepsy and also encourage discussion about any unresolved issues they might want to share. After this initial session, the patients have a one-on-one consultation with a neurologist member of the team.

The first-choice antiepileptic drugs (AEDs) for most epilepsy patients would be phenytoin, carbamazepine, and to a lesser extent, valproic acid. Use of newer AEDs is very limited because they are so expensive. We often have to deal with patients who have consulted faith healers for alternative treatments. Healers tend to play on the desperation of gullible rural people and will pass off anything—charms or plant juices—to ‘treat’ epilepsy. They are largely uncontrolled and unaccounted for in India, so it is difficult to establish contact with them and unrealistic to expect them to participate in any meaningful way with our program, as has been achieved in some countries.

Now that we have initiated this unique rural epilepsy program, we are trying to expand and improve its scope. We plan to install basic investigation facilities for epilepsy on the LLE. An EEG machine has been donated by a neurologist colleague; next on our list is a CT scanner. We have also started a basic epilepsy orientation course for local doctors at every destination. We hope to provide them with information that will allow them to continue caring for persons with epilepsy whose treatment is initiated on the LLE, and to build a network of epilepsy caregivers over time, from the village level to the cities, to help sustain care so that patients do not have to make frequent long-distance trips for their treatment.

The task of raising awareness of epilepsy and improving the treatment of PWE in India is huge. This is just the beginning of our efforts, and advancing the project will take perseverance on our part and cooperation and collaboration from as many willing and committed physicians as possible.

Dr. Singh is assistant professor in the department of neurology at the All India Institute of Medical Sciences, New Delhi.

Any physician who is interested in contributing to or participating in the epilepsy project can contact Dr. Singh at mbsneuro@gmail.com, or become an “India Control Epilepsy” fan on Facebook.

To share your comments on this article, write to us at worldneurology@elsevier.com.
BEFORE THE RESEARCH IS PUBLISHED...

BEFORE THE DRUG IS APPROVED...

BEFORE THE GUIDELINE IS ISSUED...

YOU READ IT FIRST IN

Clinical Neurology News

We Write Medicine’s First Draft

www.clinicalneurologynews.com
Honduras Pilots WFN Training Program in Latin America

BY MARCO T. MEDINA, M.D., AND THEODORE MUNSAT, M.D.

WFN Education Committee

Prof. Medina (left) is dean of the School of Medical Sciences at the National Autonomous University of Honduras, Tegucigalpa. Prof. Munsat (right) is professor emeritus, Tufts University, Boston.

One of the primary goals of the World Federation of Neurology is to help provide low-resource countries with meaningful training and education for the neurological health care providers and in so doing, to improve the neurological health of the population. These efforts in developing countries are beset with challenges, ranging from socioeconomic and structural problems—such as inadequate continuing medical education (CME) and limited access to educational and reference resources—to technical or financial constraints that make it difficult for neurologists to attend educational activities. However, the major barrier to the provision of quality care for patients with neurological disorders is that these countries have a neurologist-to-inhabitant ratio that is often far below the World Health Organization’s recommended 1 neurologist per 100,000 people.

A number of strategies can be implemented to improve neurological training and education, but the first step should always be to evaluate the conditions pertaining to the specialty in a particular country. This should include looking at demographics data and information about the availability of health care, the number of physicians and neurologists per capita, the epidemiologic profile of neurological diseases, and the existence of neurological training programs, CME, and/or accreditation programs.

Over the past 12 years, the WFN has promoted neurology education in Latin America by establishing training programs and promoting CME and certification processes.

Training Takes Root ...

Honduras was the pilot country for the WFN’s training effort, which started in 1998. Since then, Guatemala, Peru, and Mexico have also benefited from the training program.

At the start of the WFN’s training effort, Honduras had 1 neurologist per 125,000 inhabitants, and all of its neurologists had trained outside the country (see WORLD NEUROLOGY, June 2010, p. 10). The WFN Education Committee, in collaboration with the Postgraduate Direction of the National Autonomous University of Honduras, the Honduran Neurological Association, and the Honduran Secretary of Health, helped establish a neurology training program that was overseen by an external WFN review board.

By this year (2010) there was a 50% increase in the number of neurologists per capita in Honduras, which has significantly improved the quality of patient care and promoted research in the neurosciences.

The training program provided a valuable model that could be adapted and applied to other developing countries in the region with similar needs for neurological care.

The neurology department at the National Autonomous University of Honduras, Tegucigalpa, is considered one of the best in Central America, and every one of its graduates has stayed in Honduras. Faculty members are currently developing a doctoral program in neuroscience with the support of the University College London, and it is attracting the better medical school graduates from Honduras and Nicaragua.

In addition, secondary cities are now getting well-trained neurologists for the first time. This has led to greatly improved outcomes, with some assessments showing a notable reduction in deaths from status epilepticus, for example. Further incentive programs for neurocysticercosis, a scourge of the country, are beginning to show results. A vigorous stroke prevention program is also showing encouraging results.

In 2004, the Federation initiated a CME project based on content from its in-house publication, Seminars in Clinical Neurology, and the American Academy of Neurology’s CME journal, Continuum. Lifelong Learning in Neurology. The two organizations each provide six specially designed educational courses annually, either in hard copy or online.

Twelve countries—Argentina, Brazil, Chile, Columbia, Cuba, Guatemala, Honduras, Mexico, Panama, Peru, Uruguay, and Venezuela—take part in the program. Participants in each country review Seminars and Continuum, then meet as a study group to discuss the issues, review cases, and examine how practice might differ in their respective countries. The president of the national neurological society in each country appoints a WFN education coordinator who distributes the courses and arranges the discussion groups. Participants have to submit an evaluation form and belong to a national society if they wish to receive a certificate.

Continuity Takes Hold

This program is now being used increasingly for certification purposes, grand-round presentations, educational retreats, and the education of non-neurologists. In Honduras, for example, residents read one to two chapters of the two CME publications and meet for weekly discussions with their professors, sometimes inviting residents and specialists from other areas, such as internal medicine, to join. Some meetings also include patient evaluations.

The WFN has formed an education subcommittee to focus on Latin America, with the goal of improving education about neurological disorders.

The WFN has recently introduced a certification process for training programs to be reviewed externally. So far, programs in Honduras, Guatemala, Mexico, and Peru have met the criteria to qualify for certification.

The process is now under review for confirming that the program is functioning effectively, and for notifying the medical community that it meets international criteria of performance.

Several countries have requested that the WFN provide a process of external evaluation of their residents when they graduate. A logical extension of that process could lead to a more formal certification and recertification process.
Tuberculosis is a major cause of morbidity and mortality. The World Health Organization estimates there are 2 billion cases worldwide.

In recent years, the disease has become a formidable challenge, with increased prevalence in the context of HIV disease and social breakdown in many regions. It is prevalent in its manifestations, can affect any of the body’s organs, and is difficult to treat, requiring prolonged medication that must be taken correctly.

One of the more common target organs of tuberculosis (TB) is the central nervous system. This involvement has high morbidity and mortality, even with the standard treatment, which includes a four-drug antituberculous regimen (isoniazid, rifampin, pyrazinamide, and ethambutol) and possibly corticosteroids. The reason for these high rates is not clear, but probably involves the thick exudate in the basal meninges, which damages the cranial nerves and blood vessels passing through the subarachnoid space; and the effect on the arachnoid villi, which causes hydrocephalus. The resulting cranial nerve damage and strokes can be devastating.

This inflammatory reaction is an important potential therapeutic target (which has been exploited with some success in acute bacterial meningitis), and many cases of tuberculous meningitis (TBM) are treated with dexamethasone (or other corticosteroids). The efficacy of steroids is not clear and the effect of adding an anti-inflammatory and antiplatelet agent such as aspirin is reasonable to investigate, as was done for the current paper (J. Neurol. Sci. 2010;293:12-7).

Dr. Usha K. Misra of the neurology department at Sanjay Gandhi PGIMS, Lucknow, India, and colleagues randomized 118 patients (mean age, 30 years) with TBM to receive either aspirin (150 mg) or placebo. All patients were put on the four-drug anti-TB regimen. The critically ill who were encephalopathic, losing vision, or herniating also received the corticosteroids prednisolone or dexamethasone. Primary outcome was a stroke, as seen on an MRI, at 3 months; secondary outcomes were mortality and functionality as assessed by the Barthel index, also at 3 months. The groups were well balanced in baseline demographics.

For the primary outcome of new stroke at 3 months, aspirin resulted in a 19.1% absolute risk reduction of stroke, with 25% of patients in the aspirin group developing stroke, compared with 45% in the placebo group—not statistically significant. (Some studies have put this risk at roughly 50%.) Absolute risk reduction in mortality following aspirin was 22%. In all, 22% of aspirin-group patients died, compared with 44% in the placebo group (statistically significant). There was complete restoration of functionality in 40% of the aspirin group and 25% of the placebo group.

A post hoc analysis comparing patients on corticosteroid plus aspirin with placebo patients showed statistically significant decreases in death and stroke, though such analyses are most useful for hypothesis generation, suggesting this study deserves to be followed up. Should this result be upheld, it would provide another medication—an affordable one—for treating the disease, and it is likely to have implications for the pathogenesis of TBM and so provide another therapeutic target for this common and dangerous disease. The authors made no disclosures of conflicts of interest relating to the study.

DR. TSIELIS is associate professor of neurology at Wayne State University in Detroit, USA, and book review editor for the Journal of the Neurological Sciences.

Aspirin May Have Role in TB Meningitis

FROM THE JOURNAL OF THE NEUROLOGICAL SCIENCES

7th International Congress on Mental Dysfunctions & Other Non-Motor Features in Parkinson’s Disease & Related Disorders

Barcelona, Spain
December 9-12, 2010

MDPD 2010 offers specialists in the treatment of Parkinson’s disease and related disorders a unique opportunity to study the latest available information in the field. Leading scientists and clinical experts will present current basic and clinical research on:

- Cognitive dysfunction and dementia
- Psychosis
- Depression
- Pain
- Autonomic dysfunction
- Sleep impairment
- Neuroimaging
- Mental problems
- Cortical and subcortical neurodegenerative processes underlying clinical manifestations

www.kenes.com/mpdp

© Kenes International 2010. All rights reserved.

1-3 Rue de Chantepoulet, P.O. Box 1726, CH-1211 Geneva 1, Switzerland
Tel: +41 22 908 0488, Fax: +41 22 906 9140, E-mail: mdpd@kenes.com
Time to Relapse May Predict Neuroblastoma Survival

BY PATRICIA WENDLING Elsevier Global Medical News

CHICAGO — In children with neuroblastoma, time to relapse is highly predictive of overall survival post relapse, according to an analysis by Wendy B. London, Ph.D., and her colleagues.

The researchers identified other factors that are also prognostic of overall survival post relapse as well as a small proportion of relapsed patients who are salvageable.

Currently, clinicians do not know how to identify which patients are more likely to respond to post-relapse therapy and they have difficulty in interpreting time to relapse because neuroblastoma is a heterogeneous disease, Dr. London said in a presentation at the meeting.

The median time to relapse in the 2,266 children was 13.2 months, with a range from 1 day to 11.4 years. All told, 73% of children who relapsed were children aged 18 months or older; 72% were International Neuroblastoma Staging System (INSS) stage 4, and 33% had amplified MYCN oncogene expression.

Overall survival at 5 years was 29%. It was not possible to categorize time to relapse using a simple 1-year cutoff, said Dr. London, director of biostatistics at Children’s Hospital Boston.

The risk of death was about the same for children who relapsed within the first 6 months as it was for those who relapsed at 18-24 months. The risk of death was highest in those who relapsed between 6 and 18 months.

All three groups had a significantly higher risk of death, compared with patients who relapsed after 36 months (P < .001). The association between time to relapse and overall survival appears to be driven by stage 3, 4, and MYCN-amplified patients, Dr. London said.

In a survival tree regression analysis that adjusted for time to relapse, disease stage was identified as the most highly significant variable for survival post relapse. INSS stage 4 patients had a 5-year survival of 8%, compared with 52% for those who were stage 1, 2, or 3, or 4S. Upon further analysis, three cohorts emerged as salvageable after relapse:

- Patients who are stage 4, with non-amplified MYCN, and less than 18 months of age;
- Patients who are stage 1, 2, 3, or 4S with MYCN amplification; and
- Patients who are stage 1, 2, 3, or 4S with nonamplified MYCN and unfurnished grade histology.

Time to first relapse as a predictor of survival is important for two reasons, said discussant Dr. Andrew Pearson, chair of pediatric oncology at the Institute of Cancer Research and the Royal Marsden Hospital in London. It can be used to stratify and/or describe patients in early clinical trials and to identify a salvageable population post relapse.

“In the past, I’m sure that some agents have had a negative response in early clinical studies because a group of very poor prognosis patients were included,” he said. “In evaluating early clinical studies, it’s important that we understand the population that is being investigated.”

The study findings will also be used by the International Neuroblastoma Risk Group, which is nearing completion of patients populations for eligibility and response for phase II studies in neuroblastoma, he said.

In multivariable analysis, factors at diagnosis that were independently predictive of overall survival post relapse were stage 4 (hazard ratio, 6.9); stage 3 (HR, 4.3); stage 4S (HR, 3.5); MYCN amplification (HR, 2.4); age less than 18 months (HR, 1.6); and time to relapse less than 12 months (HR, 2.0)—all with a P value less than .0001, Dr. London said.

Time to relapse was predictive of survival post relapse in patients with stage 1, 2, or no MYCN amplification, but it was not independently predictive, he added.

The study was supported by the Little Heroes Pediatric Cancer Research Foundation, the Forbeck Foundation, and a grant from the National Institutes of Health. Dr. London and her associates reported no conflicts of interest.

FROM THE LANCET NEUROLOGY

Limbic Encephalitis Autoantibodies Might Target LGI1

Recent findings in patients with limbic encephalitis and antibodies against voltage-gated potassium channels indicate that the target of autoantibodies is not the VGK channel but the synaptic protein leucine-rich, glioma-inactivated 1 (LRG1).

In a report on the study, the researchers suggest new diagnostic tests and the reclassification of the disorder as an autoimmune synaptic encephalopathy. The findings could also change understanding of related disorders and major neurological disorders that share similar symptoms (Lancet Neurol. 2010 June; [doi:10.1016/S1474-4422(10)70117-X]).

Autoimmune synaptic encephalopathies are disorders in which patients develop antibodies against synaptic proteins. Autoantibodies against voltage-gated potassium channels (VGK) have been implicated in limbic encephalitis and disorders involving neumyotonia, including Morvan’s syndrome. However, Dr. Josep Dalmau of the University of Pennsylvania, Philadelphia, USA, and his American and Spanish collaborators failed to find reactivity of patient samples exposed to cells expressing VGK subunits. Using previously published methods to identify autoimmune synaptic encephalopathies, the team set out to identify the true autoantigen of limbic encephalitis associated with VGK antibodies and related disorders.

Dr. Dalmau and his colleagues analyzed the serum and cerebrospinal fluid (CSF) of 57 patients with limbic encephalitis and antibodies attributed to VGKC, and 148 patients with other disorders with or without VGKC antibodies. To the researchers’ surprise, they precipitated leucine-rich, glioma-inactivated 1 (LG1), a secreted protein known in epileptic disorders, as the target of the autoantibodies.

All of the serum or CSF from patients with limbic encephalitis and VGKC antibodies, but not from controls, recognized LG1. Because LG1 interacts with presynaptic ADAM2 and postsynaptic ADAM2 proteins, the investigators used an assay with HER293 cells transfected with LG1 and ADAM2 or ADAM3 proteins to confirm anti-LGI1 antibody visualization. Furthermore, immunoblotting with LG1-expressing cells abrogated reactivity of patient samples, which also failed to react to brains of LG1-null but not wild type mice. The serum of a patient with encephalitis, seizures, and positive 125I-alpha-dendrotoxin radioimmunoassay (specific for the putative VGKC antibodies) precipitated another protein, contactin-associated protein 2 (CASPR2), expressed in the peripheral nerves and hippocampus.

The findings indicated reliable immunological tests to confirm the diagnosis in limbic encephalitis, said the authors, who speculated that “antibody-mediated disruption of LG1 function causes increased excitability resulting in seizures and symptoms of limbic encephalopathy.” Moreover, a change in diagnostic classification is required, with the term “limbic encephalitis associated with VGKC antibodies” changed for “limbic encephalitis associated with LG1 antibodies.”

The researchers proposed including limbic encephalitis among the autoimmune synaptic encephalopathies. In an interview, Dr. Dalmau noted that the existence of a disorder related to VGKC autoantibodies still has to be demonstrated, because different autoantigens might be found in other disorders included in this current classification.

“The reason all these patients have a positive 125I-alphadendrotoxin radioimmunoassay is because LG1 is a form of different protein complexes that include VGKC, although the latter are not the real target autoantigens. Therefore, different clinical phenotypes that were difficult to explain as a result of a single immune response against VGKC are now explained by the identification of antibodies against two different molecular targets,” he said.

The study was supported in part by grants from the US-based National Institutes of Health and National Cancer Institute and Germany’s Euroimmun. Dr. Dalmau disclosed that he has filed a patent application for the use of LG1 antibody determination in patients’ sera and CSF as a diagnostic test. None of the other authors reported any conflicts of interest related to the study.

—Kelly Morris, M.D.

Dr. Morris is a freelance writer for The Lancet Neurology.
From Ancient to Modern Pain Medicine

The 14th World Pain Clinic Congress &
The 1st Asian Congress on Pain
October 28 – 31, 2010, Beijing, China

The 14th World Pain Clinic Congress and 1st Asian Congress on Pain bring pain specialists and practitioners from around the world a state-of-the-art, multi-disciplinary and expansive exploration of pain and its relief.

Main Topics Include:
- Basic Science of Pain
- Headache
- Neuropathic Pain
- Postoperative Pain Management
- Pain Imaging

www.kenes.com/wspc
BOOK REVIEW

A Range of Viewpoints Lends New Perspective


BY PETER J. KOEHLER, M.D., PH.D.

Some years ago, a paper was published on the history of the Handbook of Clinical Neurology (J. Hist. Neurosci. 2008;17:46-55) describing its roots in the Centralblatter (published in German before World War II) and Excerpta Medica (published in English after the war), which were abstract services for physicians written to make medical literature more accessible.

The founding editors of the Handbook of Clinical Neurology (HCN), Pierre J. Vinken and George W. Bruyn, worked for Excerpta Medica, where Vinken subsequently became director. They thought about starting the HCN in the 1960s, based on their experience at Excerpta Medica and inspired by another prior German publication, Handbuch der Neurologie (1935-1937, 17 volumes, edited by Burmke and Foerster), for which there was no English counterpart.

Between 1964, when the project started, and 2002, Vinken and Bruyn produced a comprehensive overview of neurology in 1,909 chapters (46,000 pages in 78 volumes) with contributions from 28 volume editors, a temporary third editor, the neurologist Harold Kelwans, and almost 2,800 authors. The original edition (1968-1982) is considered to be of important historical value. Perhaps this history of the HCN is one of the few omissions of the present volume (No. 95), which is entirely devoted to the history of neurology. It is a substantial book (992 pages), edited by psychologist and neurohistorian Stanley Finger, and two neurologists with experience in writing neurohistory, Francois Boller and Kenneth Tyler. As the editors admit in the preface, they are “aware that some topics are missing.”

However, their choice of structure has resulted in a fairly comprehensive overview of the history of neurology by starting from several viewpoints, for example, a chronological, a regional, and a nosological perspective. The chronological perspective occupies the first two sections, including nine chapters on the traditional period to about 1900, followed by the “Origins of Modern Neurology” on the evolution of neurology in the 19th century, with chapters on localization, experimentation, neuroanatomy, and neuropathology. The nosological perspective is in a fourth section, with chapters on the main neurological diseases. Despite choosing several perspectives, the editors have carefully avoided the risk of overlap.

How does this volume compare with standard books on the history of neurology and neuroscience, such as Lawrence C. McHenry’s Garrick’s History of Neurology (1969) and Finger’s Origins of Neuroscience (1994)? Besides containing more information and being a multiauthored work (60 experienced contributors), almost all topics are dealt with more extensively. Moreover, several new topics are found—for example, in chapters on “Visual Images and Neurological Illustration,” and “Neurological Illustrations: From Photography to Cinematography,” starting with the daguerreotypes, illustrations from Guillain-Barré’s Phantoms, images from Albert Londe’s (Jean-Martin Charcot’s medical photographer) studio at the Salpétrière hospital in Paris and Eadweard Muybridge’s photographic works on motion, and the rise of cinematography (a popular subject in recent literature and presentations).

There are chapters on special hospitals, child neurology, and neuroidiopathy, and an excellent, well referenced chapter on movement disorders. As the perspective of “Regional Landmarks” was chosen for a separate 13-chapter section, information on parts of the world that have been rarely dealt with elsewhere is now more readily available. This section includes chapters on Chinese, Japanese, South American, and tropical neurology. But a few important references are missing, such as the rich contents of Bruyn and Charles Porter’s History of Tropical Neurology and Alla Vein’s edited work on Russian neurosciences (J. Hist. Neurosci. 2007;16:1-2;42-57).

What do we miss? I miss a chapter on the evolution of neurology between psychiatry and internal medicine and a chapter or introduction on the term neurology and its evolution. The section on “Regional Landmarks” would have been enriched by a chapter on Spanish and Portuguese neurology, with a more extensive discussion of the work of Spaniard Ramón y Cajal (which receives scant attention in the chapter “The Anatomical Foundations”) and that of Portugal’s Egas Moniz (touched on in a short section on lobotomy in “Frontal Lobes”). And Polish neurology deserved more space than the few sentences in the chapter on Russian neurology. Finally, a chapter on synthesis would have enhanced one’s understanding of the history of neurology, but that would not be an easy job.

A few chapters, such as the one on frontal lobes, now and then cross the boundary of past and present too much.

The publication of this volume among the many others on clinical neurology marks the importance of the history of neurology, as is well described in the foreword: “It is interesting to see … how the small steps achieved by so many clinicians and scientists throughout the centuries have enabled a few to make the giant leaps forward.” It is useful to have some knowledge of the history of medicine, the editors write, not in the least as “it helps to keep us humble and keep in perspective our own efforts, as well as the breakthroughs that reach us via the media.”

This interest in the history of neurology has been acknowledged by the World Federation of Neurology since the early 1980s by an active History of the Neurosciences Research Group, now chaired by George York.

The editors of the current work have succeeded in carefully assembling a wealth of information. It may be used for teaching and enjoying, but also as a starting point for further study into the rich history of our specialty.

Dr. Kochler and Dr. Finger are coeditors of the Journal of the History of the Neurosciences.
OBITUARIES

Fred Plum (1924-2010)

BY JEROME B. POSNER, M.D.

The world of neurology lost a giant when Dr. Fred Plum died on June 11, 2010. Before his death, he was incapacitated for several years by primary progressive aphasia, an illness that robbed him first of his most striking asset, his language and way with words, and then ultimately, his finely organized and incisive mind.

Nevertheless, although unable to work, he remained in the memories of all of those who knew him and of many who had only heard of him. Fred Plum stories still abound, one of which was published as an article by Dr. Robert Daroff in the August 2009 issue of WORLD NEUROLOGY (p. 12).

Dr. Plum was born and raised in Atlantic City, N.J., USA. He matriculated first at Dartmouth (N.H.) College and then at Dartmouth Medical School, which was a 2-year medical school at that time. He graduated from Cornell Medical College in New York, in 1947, after which he served as an intern and resident in medicine and neurology under the direction of Dr. Harold Wolff until 1951. That was followed by a 2-year stint at the US Naval Hospital in St. Albans, N.Y.

In 1953, Dr. Plum was selected by Dr. Robert Williams, who was then chairman of the department of medicine at the University of Washington in Seattle, USA, to head up the department’s neurology section, even though he had never held an academic position. He was one of a series of young section chiefs, almost all of whom achieved international recognition over time. Dr. Plum’s interest in poliomyelitis led to his forming a respiratory center at Harborview Medical Center in Seattle, where chronic polio patients were taken for treatment.

Because of Dr. Plum’s skills in artificial respiration and the use at that time of barbiturates as a preferred method of attempted suicide, Harborview would admit first all comatose and subsequently all encephalopathic patients to the neurology unit. Emergency imaging was not available at the time, so a rapid and correct clinical diagnosis of stupor or comatose patients was essential for their survival. Together with Dr. Don McNealy, one of his residents, he published a seminal paper on brain-stem dysfunction with supratentorial mass lesions (Arch. Neurol. 1962;7:10-32). It was that work that eventually led to the publication of the first edition of The Diagnosis of Stupor and Coma (Plum & Posner, 1966).

In 1963, after the death of Dr. Wolff, Dr. Plum assumed the position of chair-man of the department of neurology at Cornell Medical College. The department eventually became the department of neurology and neuroscience. At Cornell, he continued his work on consciousness and coma and expanded it to include studies of brain death. He is known for coining the term “locked-in syndrome,” and, with the Scottish neurosurgeon Bryan Jennett, the term “persistent vegetative state.”

With David E. Levy, Ph.D., and others, he published important papers on prognosis in nontraumatic coma. Over the course of his career, Dr. Plum published more than 300 original research report reviews and trained several residents who subsequently went on to become chairs of departments. He served as chief editor of the Archives of Neurology from 1972 to 1976 and founding editor of The Annals of Neurology, which was first published in 1977. He served as president for research in the Association for Research in Nervous and Mental Disease, and was a member of the Institute of Medicine and the American Academy of Arts and Sciences.

Dr. Plum was one of the leaders of world neurology in his time. However, what made him a true giant was his bedside teaching. His rounds were electrifying as well as educational. It was a rare patient presented to him for whom he could not add something that the patient’s physicians had not thought of.

On rounds, he could be very tough with the house staff. His critiques could be withering, and perhaps at times less than fair. But he also accepted criticism and challenges graciously. Once, when challenged by a young medical student who was able to prove his point, Dr. Plum backed down and happily related the story to several of us, giving the medical student, as he often did with others, somewhat more credit than he deserved.

The giant is gone; all of neurology will miss him sorely.

Dr. Plum was a pivotal in the study of consciousness.

Melvin Greer (1929-2010)

BY KENNETH M. HEILMAN, M.D.

Dr. Melvin Greer, the first chairman of the department of neurology at the University of Florida and a former president of the American Academy of Neurology, died of heart failure on May 19, 2010, in Gainesville, Fla., USA.

He was born in 1929 in New York, where he attended public schools in the city’s borough of Brooklyn before graduating from New York University in 1950 and from its medical school in 1954. Dr. Greer took his pediatric residency at the university’s Bellevue Hospital, and following 2 years with the US Navy as a pediatrician in Guam, he took a neurology residency/fellowship at Columbia Presbyterian Medical Center, also in New York.

In 1961, he joined the faculty at the University of Florida’s College of Medicine (UF-COM). Three years later, he was appointed chair of the neurology division, and in 1974, he became chair of the newly created department of neurology, a position he held for 26 years until he stepped down in 2000.

Members of the department called him “Chief,” because he was more than an administrator—he led, protected, educated, supported, and enhanced their careers and lives.

Dr. Greer was a master clinician-educator who taught primarily by example and invited excellence. He trained more than 150 residents, as well as thousands of medical students and received multiple teaching awards. Although he was a person of few words, he was a kind and empathetic clinician, who was always available, day or night, for the patients who needed him.

He was also a masterful diagnostician. Many of us would toil over a patient’s diagnosis, and then, after a brief examination of the patient, he would make a diagnosis. He was almost always right. His research interests focused on the neurochemistry of neurological disorders, intracranial hypertension, and child neurology, and he wrote or cowrote many important papers on those topics.

Dr. Greer also played an important role in promoting and enhancing the specialty both nationally and internationally. He was president of the American Academy of Neurology from 1985 to 1987 and a member of the editorial boards of many publications.

He and his wife Arline had a wonderful marriage of 58 years. They had four children and have 11 grandchildren. He was a powerful and talented athlete. In the last months of his life, although his body weakened, he maintained his inner strength and continued to see his patients until 2 weeks before his death.

Mel is physically gone, but his spirit lives in many of us, and his role in enhancing our profession is eternal.

Dr. Greer was a devoted clinician and masterful diagnostician.

Dr. Heilman is professor of neurology and health psychology at the University of Florida in Gainesville, USA.
XXth WORLD CONGRESS OF NEUROLOGY

With Africa, for Africa

Marrakesh, Morocco, November 12-17, 2011

www.wcn-neurology.org