Hachinski Elected Next WFN President

BY MARK HALLETT, M.D.
Editor in Chief

BANGKOK — The 19th World Congress of Neurology in Bangkok was a wonderful success. There were more than 4,100 delegates from 115 countries. The delegates profited from a rich scientific program and enjoyable social events. Many also took advantage of being in Bangkok, going on a variety of sightseeing tours of this interesting city. The first 2 days had teaching courses on various topics. Subsequently were 3 days of invited talks and new scientific platforms and poster presentations.

The Council of Delegates of the WFN had a meeting at the beginning of the congress. Dr. Johan A. Aarli presided in his last meeting as President. The first item of business was the election of the new officers. Dr. Vladimir Hachinski and Dr. Jagjit Chopra explained to the delegates why they should be elected the next president, and Dr. Werner Hacke, Dr. Raad Shakir, and Dr. Wolfgang Grisold as the new trustee.

Another item of decision was the site for the 2013 Congress, which by rotation is planned for Europe. The societies in the European Federation of Neurological Societies had gotten together and decided to put Vienna into nomination. No other nominations were submitted and Vienna won by default (but with considerable enthusiasm). For 2015, the meeting will be in the Americas, and bidding is now open.

As to membership in the WFN, there was happiness expressed that there is now representation from three Chinese societies, China, Taiwan, and Hong Kong, and representatives from all three were present—Dr. Chuan-Zhen Lu, Dr. Chung-Piao Tsai, and Dr. Raymond Cheung, respectively. In addition, three new countries—Albania, Algeria, and Parkinson’s experts in New Delhi.

New Techniques Highlight Longer-Term Effects of TBI

BY MICHELE G. SULLIVAN
Elsevier Global Medical News

BANGKOK — New imaging techniques may help to explain the disabling symptoms that can plague patients with traumatic brain injury long after their acute problems have resolved, and eventually guide the best choice for medical therapy.

Survivors of traumatic brain injury who complain of depression, irritability, and memory or cognitive problems are often written off as psychiatric cases or malingerers. Dr. Ramon Diaz-Arrastia said at the World Congress of Neurology. “This is the frustrating thing about TBI. The patients might look OK—they don’t have paralysis; they are walking around. But their cognitive and behavioral problems are real.”

Imaging techniques that are now well established in other areas of neurology—such as diffusion-weighted and susceptibility-weighted magnetic resonance imaging—are now being used to show that brain injuries leave permanent, life-altering marks behind after the contusions and hematomas have healed.

These findings may have both immediate and long-range benefits, said Dr. Diaz-Arrastia, a professor of neurology at the University of Texas Southwestern Medical Center, Dallas, Tex., U.S.A. “Right now, imaging these patients has the primary value of providing a prognosis and perhaps helping them obtain the care that they need. In terms of reimbursement, it’s useful to have an objective documentation of the injury when trying to convince insurers to cover rehabilitative service.

In the future, imaging the post-TBI brain may help guide medical treatment choices and monitor drugs’ effectiveness. So far, nearly 30 drugs have been approved for use in the treatment of traumatic brain injury, and their effects are being monitored.”

See TBI • page 14
Neurology for All the People

BY MARK HALLETT, M.D.

BANGKOK — The World Congress of Neurology was impressive for several reasons. One was the obvious, that neurologists were there from all over the world. Participants came from over 115 countries and, because of extensive education programs, including from the Congress itself, the level of clinical neurological expertise is becoming similar everywhere. Plenary lectures, platform presentations, and abstracts came from all over the world. Neurologists in some parts of the developing world, because of heavy clinical loads, may well have more clinical experience with some types of patients than “experts” from the developed world. Neurologists in India, for example, will see more patients with Wilson disease than would movement disorder specialists in the United States. Generally speaking, the same neurological conditions are seen everywhere, although the proportions differ.

The goal of the WFN, as with most neurological societies, is to get good neurological care to all the people. This is where there are problems. Depending on the country, the problems are different both in type and magnitude. In the United States, the government is currently grappling with reorganizing the system to get even basic health care to everyone. Political and economic interests make the negotiations complex, but there are certainly enough resources. At the other end of the scale, there are many poor developing countries with only few, or even no, neurologists, and very limited resources and medications. What can be done in this type of situation? The WFN is taking on these problems. More neurologists have to be trained, and their level of expertise maintained. Neurologists on the ground, who work mostly in cities, have to find ways to deliver care to patients in the rural areas. For example, in Mongolia, almost all neurologists are in the capital city, Ulan Bataar, whereas much of the population are nomadic herders scattered around the country. Similarly, in many sub-Saharan African countries, many people are living in villages far from the cities and their medical schools.

Neurologists can go out into the field, as Dr. Amadou Gallo Diop of Senegal does with his neuro-cameras, as he described at the Council of Delegates meeting and in one of the Congress sessions. Telemedicine might be able to play a role. Dr. Gretchen Birbeck of the U.S. has taken the approach, piloted in Zambia, of getting non-neurologist health workers trained in some basic neurological skills to deal with the most important and common problems.

In many of these situations as well, the neurologists have to cope with treating patients without the availability of much equipment. MRI and even CT scanners may be sparse. A sole EEG machine cannot be helpful if it is broken or has no paper; a new digital model may be too expensive. To deal with epilepsy, there might only be phenobarbital available. Neurologists have to do the best they can and hope resources will improve. Each country has to ante up to help its own, but there are good opportunities for philanthropy to have immediate benefit. Dr. Diop could use his own van rather than having to rent one each time. With donations, the World Neurology Foundation can buy more neurological tool kits to help neurologists with their physical examinations. In WORLD NEUROLOGY, we will try to keep you informed about what is going on in different countries.
RESEARCH GROUP REPORTS

The Many Facets of Organization and Delivery

The beginnings of the World Federation of Neurology's Research Group for Organization and Delivery of Neurological Services go back to the 1987 New Delhi preparatory meeting of WFN committees for the 14th World Congress of Neurology in 1989. At that meeting, Jagjit S. Chopra and I put forward a proposal to organize a symposium on "Neurology in Developing Countries," based on our experiences as neurologists in our own countries, India, and what was then Yugoslavia. The proposal was accepted, and the symposium took place 2 years later, with speakers from developing and developed countries making substantial contributions.

A draft of the meeting proceedings and resulting recommendations, titled "Resolution and the Recommendations on Neurological Services in Developing Countries," was approved by the WFN and presented to several neurological journals. The Federation also established a new research group relating to neurology and neurologists and the organization and delivery of neurological services.

The late Prof. Richard L. Masland, who was then WFN President, and Lord John Walton of Detchant, then Chairman of the Research Committee, insisted that the optimal organization and delivery of neurological services were also a problem in developed countries and that the common goal of improving these circumstances worldwide was to be the mission of the whole WFN. The founding members, eminent neurologists from all over the world, supported the program of activities of the new group.

The research group was very active, with many meetings being held at numerous international neurology gatherings: at the Pan-European Congress of Neurology in Vienna in 1991; the Pan African Association of Neurological Sciences Congress in Marrakesh in 1992; the 15th World Congress of Neurology (WCN) in Toronto in 1993; the 1st Conference on Organization and Delivery of Neurological Services (ODNS) in New Delhi in 1994; and the 2nd Conference on ODNS in Athens in 1996, among others.

At the Athens conference, the attendees summarized the problems of the delivery of neurological services worldwide, and the document was approved at a meeting between the research group and representatives from the World Health Organization (WHO) at the 16th WCN in Buenos Aires the following year. The officers and members of the group disseminated the information about its aims at various regional, national, or international conferences. At the 18th WCN in Sydney in 2003, members of the group requested funding for their quest to assist neurologists in various parts of the world in delivering quality neurological services.

Some of the issues and problems that were repeatedly stressed included:

- Urgently needed neuroepidemiological investigations;
- Infections and infestations as etiologic factors of neurological diseases in developing countries;
- The need for using appropriate screening measures in field studies;
- Sensitivity and specificity of modern technologies in terms of relative availability and diagnostic efficacy;
- The importance of subspecialties in specific fields of neurology;
- The need for a system of horizontal and vertically connected hierarchical organization of neurological services based on active primary health services, respecting local and regional situations;
- The appropriate education of neurologists in terms of modern scientific advances, but simultaneously for practical work in their specific conditions using rational diagnostic and management means;
- The perils of "copying" education and management models from the most advanced medical communities to the underdeveloped nations, with founding centers of excellence organized for specific regional needs; and
- The need to recognize the cost-benefit aspects of neurological management as a growing interest in the world neurological community.

Specific concerns were raised about recent developments in some health care systems—such as the emergence of health organizations, "rational through competition purchasing" of health services, and the fact that investors were profiting from the health systems. The research group maintained that such approaches to health care could be devastating in less developed countries and emphasized that the WFN in collaboration with the WHO should strive to prevent such developments.

Another area in which international collaboration is needed is neuroethics. This is important because of the need to study and address sensitive issues in neurology that sometimes are connected to religion or regional cultural traditions.

The closer collaboration between the WFN and the WHO should increase public and professional interest in understanding the importance of neurological diseases for public health worldwide.

Finally, I want to express my deep gratitude to the officers and members of our group, the organizers and speakers involved in our conferences, meetings, and symposia; and our founding members who continue to contribute their ample professional experience and human empathy in advancing the group’s basic principles. I would also like to express a special gratitude to the WFN leaders, who stressed the importance of such work, and to my colleagues and friends who organized some of the meetings: Jagjit S. Chopra, Franz Gerstenbrand, Maynard M. Cohen, Helmut Lechner, Francisco Rubio-Donnadieu, and many others.

I hope that the ODNS group will continue with its activities, which are important for neurology as well the human community, under the leadership of the Acting Chairman, Dr. Leonitno Battistin, and in future years. The leaders of the other research groups are invited to collaborate with the ODNS group to achieve the common interests of the WFN in the respective fields of neurology.

Spreading the Word on Sleep and Good Health

The Sleep Research Group of the World Federation of Neurology adopted a declaration during the 2nd World Congress of Sleep Medicine in Bangkok in 2007 recognizing that sleepiness and sleeplessness are a global epidemic that threatens health and quality of life.

The group asserted that much could be done to prevent and treat disorders of sleep and alertness—of which apnea, restless legs syndrome, and psychophysiological insomnia are the most common—especially if it were initiated through professional and public awareness campaigns.

Findings suggest that sleep problems threaten the health and quality of life of up to 45% of the world’s population (Aggs Health 2008;4:11-21). In addition to causing distress, the individual, sleep problems also create a significant burden on society. In the United States, it is estimated that direct and indirect costs of insomnia amount to $107.5 billion annually (Sleep Res. 1997;26:412). Yet despite the seriousness of the problem, less than a third of people with moderate to severe sleep problems seek professional help (Am. J. Managed Care 2007;13: S112-6).

Sleep deprivation has also been associated with decline in mental health, and people with insomnia are more likely to suffer symptoms of depression and anxiety (Sleep 1999:22: S379-85). Other links have been made between sleep deprivation and conditions such as hypertension, obesity, diabetes, and weakened immune system. Sleep disorders can also negatively affect overall quality of life and family and social relationships.

This year, the WFN Sleep Research Group underscored its commitment to raising global awareness of the importance of sleep when it endorsed World Sleep Day, on March 20. This annual event is organized by the World Sleep Day Committee of the World Association of Sleep Medicine. It aims to lessen the burden of sleep problems through better prevention and management of sleep disorders.

The slogan for 2009 was “Drive Alert, Arrive Safe.” In the United States, up to 20% of road fatalities annually are thought to be related to fatigue and tiredness. To reduce the risk of sleepiness on the road, the World Sleep Day message emphasized the importance of understanding what is needed to ensure wakefulness when driving.

Improved diagnosis and treatment of sleep disorders could also help reduce fatal or serious road accidents by up to one-third, says the World Association of Sleep Medicine. Insomnia, one of the most common sleep complaints, has been linked to a significant rise in traffic accidents.

Next year, World Sleep Day will be on March 19 and its slogan will be “Sleep Well, Stay Healthy.” The aim will be to educate both adults and children on how to improve sleep quality.

The 2010 World Sleep Day Committee is Allan O’Bryan, Ph.D., executive director; Antonio Culebras, M.D., chair; Catesby Ware; and liaison to regional cultural traditions.

Collaboration is needed is neuroethics. This is important because of the need to study and address sensitive issues in neurology that sometimes are connected to religion or regional cultural traditions.

The closer collaboration between the WFN and the WHO should increase public and professional interest in understanding the importance of neurological diseases for public health worldwide.

Finally, I want to express my deep gratitude to the officers and members of our group, the organizers and speakers involved in our conferences, meetings, and symposia; and our founding members who continue to contribute their ample professional experience and human empathy in advancing the group’s basic principles. I would also like to express a special gratitude to the WFN leaders, who stressed the importance of such work, and to my colleagues and friends who organized some of the meetings: Jagjit S. Chopra, Franz Gerstenbrand, Maynard M. Cohen, Helmut Lechner, Francisco Rubio-Donnadieu, and many others.

I hope that the ODNS group will continue with its activities, which are important for neurology as well the human community, under the leadership of the Acting Chairman, Dr. Leonitno Battistin, and in future years. The leaders of the other research groups are invited to collaborate with the ODNS group to achieve the common interests of the WFN in the respective fields of neurology.

Spreading the Word on Sleep and Good Health

The Sleep Research Group of the World Federation of Neurology adopted a declaration during the 2nd World Congress of Sleep Medicine in Bangkok in 2007 recognizing that sleepiness and sleeplessness are a global epidemic that threatens health and quality of life.

The group asserted that much could be done to prevent and treat disorders of sleep and alertness—of which apnea, restless legs syndrome, and psychophysiological insomnia are the most common—especially if it were initiated through professional and public awareness campaigns.

Findings suggest that sleep problems threaten the health and quality of life of up to 45% of the world’s population (Aggs Health 2008;4:11-21). In addition to causing distress, the individual, sleep problems also create a significant burden on society. In the United States, it is estimated that direct and indirect costs of insomnia amount to $107.5 billion annually (Sleep Res. 1997;26:412). Yet despite the seriousness of the problem, less than a third of people with moderate to severe sleep problems seek professional help (Am. J. Managed Care 2007;13: S112-6).

Sleep deprivation has also been associated with decline in mental health, and people with insomnia are more likely to suffer symptoms of depression and anxiety (Sleep 1999:22: S379-85). Other links have been made between sleep deprivation and conditions such as hypertension, obesity, diabetes, and weakened immune system. Sleep disorders can also negatively affect overall quality of life and family and social relationships.

This year, the WFN Sleep Research Group underscored its commitment to raising global awareness of the importance of sleep when it endorsed World Sleep Day, on March 20. This annual event is organized by the World Sleep Day Committee of the World Association of Sleep Medicine. It aims to lessen the burden of sleep problems through better prevention and management of sleep disorders.

The slogan for 2009 was “Drive Alert, Arrive Safe.” In the United States, up to 20% of road fatalities annually are thought to be related to fatigue and tiredness. To reduce the risk of sleepiness on the road, the World Sleep Day message emphasized the importance of understanding what is needed to ensure wakefulness when driving.

Improved diagnosis and treatment of sleep disorders could also help reduce fatal or serious road accidents by up to one-third, says the World Association of Sleep Medicine. Insomnia, one of the most common sleep complaints, has been linked to a significant rise in traffic accidents.

Next year, World Sleep Day will be on March 19 and its slogan will be “Sleep Well, Stay Healthy.” The aim will be to educate both adults and children on how to improve sleep quality.

The 2010 World Sleep Day Committee is Allan O’Bryan, Ph.D., executive director; Antonio Culebras, M.D., chair; Catesby Ware; and liaison to regional cultural traditions.

Collaboration is needed is neuroethics. This is important because of the need to study and address sensitive issues in neurology that sometimes are connected to religion or regional cultural traditions.
The founders of the WFN in 1957 realized that collaborative international programs in clinical and basic neurological research would be central among the activities of the new organization. One of the first projects came through a grant from the National Institute of Neurological Diseases and Blindness (now the National Institute of Neurological Disorders and Stroke) at the National Institutes of Health in Bethesda, Md., U.S.A., to fund research on the geographical pathology of cerebral vascular disease.

The international research projects were dealt with by new organizational elements called “problem commissions,” which were established in cerebrovascular disease, child neurology, tropical neurology, neurogenetics, neuromuscular disease, and many other areas of neurology.

Discussions were held about establishing a sister organization, a World Association of Neurological Commissions, with less formal links to the WFN. But the proposal met with major difficulties, and in 1966, the Federation established the Research Committee of the WFN.

The problem commissions became known as Research Groups, which were the building blocks of the Research Committee. Its first Chairman was Prof. Adolphe Franceschetti from Geneva. In 1977, Lord John Walton of Detchant was elected Chairman, and Prof. Armand Lowenthal was elected Secretary of the Research Committee. The WFN Council of Delegates decided the groups should raise funds to support their activities.

There are now 26 WFN Research Groups. Some, such as Cerebrospinal Fluid, Neuromuscular Disease, Neurogenetics, Neuro-Ophthalmology, Parkinsonism and Related Disorders, Tropical Neurology, and others date back to the days of the problem commissions; others have been established in step with developments in modern medicine.

Many WFN Research Groups have developed into new international societies and have become corporate members of the Research Committee. Neurology has grown from a relatively well-defined specialty in the 1950s into one with a network of subspecialties and special interest groups with strong ties to other areas of medicine and science.

An important part of this evolution is the formation of new international societies and the emergence of regional and international congresses of subspecialties in the field. By focusing on selected topics of neurology, new platforms have been prepared for international research activities, crossing borders between specialties and expanding our knowledge of neurological disorders. The WFN is dependent on this apparently unbounded expansion; there should be no preservation of the status quo in neurosciences.

The World Congresses of Neurology, which from this year will be held biennially, always present a cross section of contemporary neurology, bringing all these activities as main themes and symposia so that participants will have the opportunity to be updated in general neurology.

At the same time, those who want a comprehensive presentation covering more than is possible in one out of five main themes at a World Congress and who are not able to attend both, might decide to seek an international congress that focuses on a single theme, such as epilepsy or stroke. This is important and is an element of the basis for the development in clinical neurosciences.

For all specialties and subspecialties, there is probably an upper limit for how many international congresses can be organized annually within one sector of medicine. Financial and technical aspects of planning conferences are substantial. Organizing congresses and attending them is expensive and time-consuming, and advances in video-conferencing are paving the way for attractive alternatives.

Subspecialties and niches of neurology also might serve as nongovernmental organizations at international organizations such as the World Health Organization. For national health politicians, however, neurology is first and foremost a part of medicine. In countries with only a few neurologists, there is no need for a fragmented neurology.

The purpose of the global initiative of neurology and public health is to increase professional and public awareness of the frequency, severity, and costs of neurological disorders and to emphasize the need to provide neurological care at all levels, including primary care. For scientific progress, a plurality is a sine qua non. For the public health issue, the clinical neurosciences should have one voice.

Neurologists Sit for First EU Board Examination

Six candidates from several European countries sat for and passed the first European Board Examination in Neurology held in June at the European Neurological Society congress in Milan.

The examination was developed by the European Board of Neurology (EBN), a section of the Brussels-based Union Européenne des Médecins Spécialistes (UEMS), which represents national associations of medical specialists in the European Union (EU). The purpose of the examination is to standardize training for neurologists across the EU, said Dr. Wolfgang Grisold, president of the UEMS/EBN and the ENS and EFNS, and a board member of the American Board of Psychiatry and Neurology, said he suspected the examination would become “increasingly important. It is something that the American Board will need to monitor, especially if issues such as recognition, reciprocity, and so on, come up.”

Dr. Svein Mellgren of the department of neurology at the University of North Norway in Tromsø is the chairman of the examination committee. The examiners were Dr. Andreas Steck of the University Hospital Basel and the ENS; Prof. Savas Ozurtak of Ege University in Izmir, Turkey, who performed the quality assessment. The groups were invited to participate by the UEMS-EBN. Funding for the projects came from the UEMS/EBN and the ENS and EFNS, and the Vienna Medical Academy oversaw the organizational aspects of the process.

Eligible candidates must either be certified by their national society or at a stage in their residency where they would be admitted for their national training certification. The examination is restricted to participants from EU member states. Initially, 12 candidates applied to take the examination—seven were admitted to sit for it, and six candidates eventually took it.

The examination consists of two compulsory sections and a third optional section for extra credit. The first part is a 2-hour, 120-question multiple-choice test based on the questions developed by the scientific panels of the societies. The second part is a structured oral examination focusing on four cases. After that, candidates can elect to do a 5-minute presentation of an interesting case or scientific research for extra points.

The EBN said it was not discouraged by this small number of candidates. It hopes numbers will increase and that the examination will become a sought-after qualification that might eventually replace some of the national examinations.

There was a low take-up for the first examination “partly because individual countries are organizing their own domestic exams,” Dr. Compston said. “It remains to be seen if the system gains momentum, but it seems certain that people entering training now will have to achieve this or a related local certification in due course, and in that sense it may be an important development.”

Dr. Michael J. Aminoff, professor and executive vice-chair of the department of neurology at the University of California, San Francisco, and a board member of the American Board of Psychiatry and Neurology, said he suspected the examination would become “increasingly important. It is something that the American Board will need to monitor, especially if issues such as recognition, reciprocity, and so on, come up.”
Role of Olfaction Explored in Diagnosing PD

BY JOHN DUDA, M.D.

Olfaction, considered by some to be the neglected sense in neurology, was the focus of a symposium at the 6th International Congress on Mental Dysfunctions and Other Non-motor Features in Parkinson’s Disease and Related Disorders held in October last year in Dresden, Germany.

Although olfactory dysfunction is more common in Parkinson’s disease (PD) than is resting tremor—one of the cardinal features of the disorder—that was possibly the first time at a congress that a full symposium was dedicated to it.

Recent advances in research include the recognition that olfactory dysfunction might precede the motor symptoms of PD, and that the olfactory bulb and tract might be one of the induction sites for Lewy pathology. In addition, olfactory dysfunction has been found to have sufficient clinical utility that a recent evidence-based practice parameter from the American Academy of Neurology stated that olfactory testing should be considered to differentiate PD from some other atypical Parkinsonian disorders, including progressive supranuclear palsy and corticobasal degeneration.

It was with this in mind that the members of the program committee of the Dresden meeting decided to include a session titled: “Olfaction and Parkinsonism: What we know and how you can use it in your clinic,” to review recent advances related to olfaction and PD.

The session included several luminaries in the field, including Richard Doty, Ph.D., of the University of Pennsylvania, who had one of the first reports linking olfactory dysfunction and Parkinson’s disease in 1988. He presented his recent data on the prevalence of smell dysfunction in welders with occupational exposure to manganese that suggested that 88% of these welders had poorer smell function than age-matched controls.

Another prominent contributor to the field from Barts and the London School of Medicine and Dentistry, Dr. Christopher Hawkes, discussed his observations of olfactory dysfunction in PD and normal aging, which suggest that PD starts with an acute event and progresses faster than simple aging.

Dr. Thomas Hummel, from the University of Dresden Medical School, Germany, summarized the modalities available to assess olfaction, including his own work with Sniffin’ Sticks, which combines assessments of odor identification, odor discrimination, and odor detection threshold, and which he helped develop. I reported my recent findings on the use of the olfactory system as a pathological model of Lewy neurodegeneration.

Dr. Henk Berendse of the VU University Medical Center in Amsterdam rounded out the symposium with a discussion about the possibility of using olfactory dysfunction as a biomarker of early nonmotor PD. Data from a prospective study in asymptomatic first-degree relatives of PD patients at his institution have shown that otherwise unexplained olfactory deficits are associated with a 10% risk of developing PD within 2 years.

Spurred by the attendees’ enthusiasm about the symposium, the presenters said they wanted to continue to raise awareness of the role of the neglected sense as a tool in the clinical evaluation of movement disorder patients and in PD research. A follow-up session on this topic is planned for the 7th International Congress on Mental Dysfunctions and other Non-Motor Features in Parkinson’s Disease and Related Disorders to be held Dec. 9-12, 2010, in Barcelona, Spain.

Dr. DUDA is director of Parkinson’s Disease Research, Education and Clinical Center, Philadelphia VA Medical Center and assistant professor of neurology at the University of Pennsylvania School of Medicine, Philadelphia.
The foramen ovale is a remnant of fetal circulation resulting in incomplete closure of the interatrial septum. Usually, fibrosis follows complete fusion of the interatrial septum by the age of 2 years. However, if there is no septal fusion, it will result in patent foramen ovale, a potential one-way valve for the right-to-left shunting that can permit the systemic passage of thrombi of venous origin into the intracranial circulation and which can result in paradoxical embolism. Patent foramen ovale (PFO) was first described in 1564 by the Italian surgeon, Leonardi Botalio, and in 1877, Julius F. Cohnheim, a German pathologist, was the first to describe the occurrence of paradoxical embolism through a PFO in an autopsy study.

Seeing the Problem

Today, PFO can be visualized noninvasively by transesophageal echocardiography (TEE), transesophageal echocardiography (TTE), or by transthoracic Doppler (TCD) recording of microemboli tracks. For detection of right-to-left shunting (RLS) through the PFO, the agitated saline is injected intravenously during these procedures at rest and after a Valasalva maneuver. TEE remains the “gold standard” tool for PFO documentation, with 91% sensitivity and 96% specificity, compared with TTE, which detects 50%-60% of PFO. The sensitivity of TCD for PFO monitoring is estimated at 84%-92%, and in some series has been superior to TEE in detecting small PFOs and quantifying by cerebral RLS. Nevertheless, TEE allows for the direct measure of the PFO diameter and exploration for additional atrial septum defects.

Atrial septal aneurysm (ASA)

Atrial septal aneurysm (ASA) is an abnormal protrusion of a portion of the atrial septum that may interact with PFO. It is described as a hypermobile septum primum that protrudes alternatively into the right and left atrium during each cardiac cycle. PFOs are detected in 20%-33% of the general population at autopsy or during TEE and might have a familial predilection with autosomal dominant inheritance. The prevalence of isolated ASA in the general population is less than 1% as measured by TEE but up to 83% of patients with ASA also have an RLS.

In addition to predisposing patients to paradoxical embolism, PFOs have also been implicated in cryptogenic stroke, migraine, platypnea-orthodeoxia syndrome, decompression illness in scuba divers, cerebral fat embolism syndrome, obstructive sleep apnea, and transient global amnesia. Paradoxical embolism is thought to be the mechanism of stroke in patients with PFO, because small blood clots could cross the PFO, leading to clinically significant sequelae in the brain. The theory suggests that thrombi could form within the PFO tunnel (in situ PFO thrombus). Despite intensive work-up, more than 40% of all ischemic strokes have no clearly identifiable cause and are classified as cryptogenic.

Cryptogenic Stroke and Pelvic Veins

In 1988, two case-control studies reported an increased prevalence of PFO in patients with cryptogenic stroke (40%-50%), compared with controls (10%-15%). Prevalence was also higher in patients in the cryptogenic stroke group than in those with a determined origin of stroke (45% vs. 23%, respectively). Calculations based on these findings suggest that in the United States, about 100,000 strokes a year could be attributed to PFO.

A meta-analysis suggests a strong relation between PFO and cryptogenic stroke, especially in patients who are younger than 55 years. In addition, the combined presence of ASA and PFO significantly potentiates stroke risk in these younger patients. Although most case-control studies of PFO and stroke have focused on patients under the age of 55 years, at least in one study, the risk of having a PFO in the setting of cryptogenic stroke has been confirmed to be higher in older patients as well. Not all cases of cryptogenic stroke with PFO paradoxical embolism must be assumed as a stroke mechanism. To be able to suggest a true causative relationship between a PFO and cryptogenic stroke, several inquiries should be made about sedimentary period or Valasalva maneuvers before the stroke of onset. Straining at stool, heavy lifting, sneezing, coughing, vomiting, sexual intercourse, and other activities associated with Valasalva maneuvers and higher intrathoracic pressure may make paradoxical embolism more plausible. Indeed, prolonged immobility as in car or air travel (“economy class” stroke syndrome) or immobilizing procedures are more likely to lead to thrombus formation in the deep or superficial veins.

Pelvic veins are an important source of paradoxical embolism in patients with PFO. In the Paradoxical Embolism from Large Veins in Ischemic Stroke (PELVIS) study, pelvic deep vein thrombosis (DVT) as detected by magnetic resonance venography was more frequently presented in patients with cryptogenic stroke and PFO than in those with stroke of determined origin (20% vs. 4%, respectively). Patients with postulated paradoxical embolism appear to have a large PFO (more than 2 mm in diameter), a large RLS grade, and coexisting ASA, DVT, and prothrombotic disorders. Furthermore, embolic stroke neuroimaging and clinical topography support the paradoxical embolization mechanism in patients with cryptogenic stroke in whom PFO is detected.

Management Strategies

To date, management of patients with PFO and cryptogenic stroke presents a clinical dilemma for neurologists and cardiologists. Strategic options for the prevention of recurrent stroke in these patients include antplatelet or anticoagulant therapy, or surgical or percutaneous closure. On the one hand, the PFO in Cryptogenic Stroke Study (PCSIS) data support equivalent protective effect of antplatelet and anticoagulant therapy in patients with PFO and cryptogenic stroke. On the other hand, surgical treatment can permanently close the PFO, thus eliminating the need for medical therapy, however, surgical closure requires thoracotomy and cardiopulmonary bypass with possible morbidities that include atrial fibrillation, postpericardiotomy syndrome, and others.

There has been great technological advancement of the minimally invasive endovascular techniques for PFO closure, two of which, CardioSEAL (NMT Medical Inc., Boston, Mass., U.S.A.) and Amplatzer (AGA Medical Corp., Golden Valley, Minn., U.S.A.), have been approved by the U.S. Food and Drug Administration. At least five randomized clinical trials are underway to compare PFO closure devices with best medical management to prevent recurrent stroke. Meanwhile, as long as there are no evidence-based medicine guidelines, a stratification of patients with presumed PFO-related stroke to different therapeutic regimens can be done according to individualized “decision-making strategy.”

References

Patent Foramen Ovale in Vascular Neurology

BY ALEXANDER Y. GUR, M.D., PH.D.

Dr. Gur is a senior neurologist in the Stroke Unit in the neurology department at Tel Aviv Sourasky Medical Center and a lecturer at Tel Aviv University's Sackler Faculty of Medicine.

BY NATAN M. BORNSTEIN, M.D.

Dr. Bornstein is head of the Stroke Unit in the neurology department at Tel Aviv Sourasky Medical Center and a professor at Tel Aviv University's Sackler Faculty of Medicine.

Seeking Assistant or Associate Professor for Michigan State University’s International Neurologic and Psychiatry Epidemiology Program. Candidate expected to have an international research focus in resource-poor/developing region addressing neurologic disorders relevant to public health. Neurologist (MD or DO) must have research experience/expertise. Successful completion of either an ACGME or AOA neurology residency program required. Board certified or eligible in adult or child neurology.

For more information about the International Neurologic Psychiatric Epidemiologic Program, please visit our website at: http://neurology.msu.edu/academics/inpep.shtml

Applications due December 31, 2009.

Email CV and cover letter to: INPEP@hc.msu.edu

MSU is an affirmative-action, equal-opportunity employer, committed to achieving excellence through cultural diversity. The university actively encourages applications and/or nominations of women, persons of color, veterans and persons with disabilities.
The outgoing President of the World Federation of Neurology, Dr. Johan A. Aarli (2nd from right), is shown with the newly elected officials, from left, Dr. Werner Hacke, Vice-President; Dr. Raad Shakir, Secretary-Treasurer General; and Dr. Vladimir Hachinski, President.

From left are Dr. Niphon Poungvarin, president of the Congress; Dr. Chuan-Zhen Lu from China; outgoing WFN President, Dr. Johan A. Aarli; Dr. Ching-Piao Tsai from Taiwan, and Dr. Raymond Cheung from Hong Kong.

Dr. Noshir Wadia of India was awarded a medal in recognition of his service and contributions to international neurology and the WFN.

Nobel laureate, Dr. Stanley Prusiner, presented his pioneering work on prions.

Dr. Jun Kimura and Lord John Walton of Detracht, both Past Presidents of the WFN, were the vote counters in the elections for new officers, held at the Council of Delegates during the Congress.

Dr. Roger Rosenberg was awarded a medal for Scientific Achievement. His work has focused on the molecular biology of Alzheimer’s disease.

Dr. Niphon Poungvarin was President of the 2009 World Congress of Neurology.

Dr. Rosenberg’s early work led to the understanding of the genetic basis of Machado-Joseph Disease, now referred to as SCA3. For many years, he has been investigating the molecular biology of Alzheimer’s disease and recently has developed a vaccine with significant therapeutic potential. His book, The Molecular and Genetic Basis of Neurologic and Psychiatric Disease (Philadelphia: Butterworth-Heinemann, 2003), is now in its fourth edition. He serves as editor in chief of the Archives of Neurology.

The delegates from Morocco are hard at work already planning the 20th congress in Marrakesh in November 2011.
Why publish with Elsevier?

125 years of publishing expertise
For the past 125 years, the name Elsevier has been synonymous with excellence in publishing. That tradition carries on today. Every year, Elsevier accepts and publishes more than 250,000 journal articles. More than 20% of the key international scientific publications recognised by the Institute for Scientific Information (ISI) are published by Elsevier. www.elsevier.com/aboutelsevier

World-renowned publications
Among the thousands of journals and books published by Elsevier are some of the world’s most prominent and respected medical, scientific and technological publications. These include The Lancet, Cell, Tetrahedron Letters and a host of others.

A prominent class of peers
Those authors who publish with Elsevier can take pride in knowing that the most honoured scholars, scientific leaders and educators - from Galileo to Jules Verne and Stephen Hawking - have also published with Elsevier.

Your rights: our responsibility
At Elsevier, our authors are our life’s blood. That’s why we’re dedicated to protecting Authors’ rights and ensuring that any and all legal information and copyright regulations are addressed.

Benefits to authors
We also provide many author benefits, such as free PDFs for most journals, a liberal copyright policy, special discounts on Elsevier publications and much more. In addition, Elsevier is committed to the highest standards of electronic archiving and information sharing, to ensure that articles are available for future reference.

Elsevier’s service to the community
Elsevier recognises its responsibility to the community and the world at large. We take pride in our different corporate responsibility programmes. www.elsevier.com/philanthropy

For more information visit:
www.elsevier.com/authors
Clinical Neurophysiology

is dedicated to fostering research and disseminating information on all aspects of the specialty, both normal and abnormal. The journal aims at publishing scholarly reports on human physiology and pathophysiology of both the central and the peripheral nervous system.

Editor-in-Chief: David Burke, University of Sydney, Australia

Handbook of Clinical Neurophysiology Series

Volume 9: Vertigo and imbalance: Clinical Neurophysiology of the Vestibular System
Edited by: David Zee and Scott Eggers
ISBN: 9780444529121

Volume 8: Intraoperative Monitoring of Neural Function
Edited by: Marc R. Nuwer
ISBN: 9780444518248

Volume 7: Peripheral Nerve Diseases
Edited by: Jun Kimura
ISBN: 9780444515088

Volume 6: Clinical Neurophysiology of Sleep Disorders
Edited by: Christian Guilleminault
ISBN: 9780444515179

Volume 5: Disorders of Visual Processing
Edited by: Gastone G. Celesia
ISBN: 9780444523388

Volume 4: Clinical Neurophysiology of Motor Neuron Diseases
Edited by: Andrew Eisen
ISBN: 9780444513595

Volume 3: Presurgical Assessment of the Epilepsies with Clinical Neurophysiology and Functional Imaging
Edited by: F. Rosenow and H.O. Luders
ISBN: 9780444510464

Volume 2: Clinical Neurophysiology of Disorders of Muscle and Neuromuscular Junction, Including Fatigue
Edited by: Erik Stålberg
ISBN: 9780444505867

Volume 1: Movement Disorders
Edited by: Mark Hallett
ISBN: 9780444507259

Must-read publications of the International Federation of Clinical Neurophysiology available now on ScienceDirect!

Book and Journals available now
www.sciencedirect.com

Clinical Neurophysiology

Official journal of the International Federation of Clinical Neurophysiology, the Italian Clinical Neurophysiology Society and the Brazilian Society of Clinical Neurophysiology.

Clinical Neurophysiology is dedicated to fostering research and disseminating information on all aspects of the specialty, both normal and abnormal. The journal aims at publishing scholarly reports on human physiology and pathophysiology of both the central and the peripheral nervous system.

52, 739° articles downloaded every month from Science Direct

*Figure is based on full text articles downloaded monthly via ScienceDirect between July 2008 and June 2009

www.elsevier.com/clinph
Stay Ahead of the News

Activate Your FREE Online Access to www.clinicalneurologynews.com

Clinical Neurology News

Your free registration gives you the full-text content of Clinical Neurology News

SEARCH our content by issue, subject

STAY on top of medical news via e-alerts and e-TOCs sent directly to your inbox

SHARE breaking news with your colleague or patient

Clinical Neurology News

www.clinicalneurologynews.com

Covering the World of Medicine
In print. Online. All the time.
Compression of brain tissue by an external mass has many clinical effects, such as weakness, numbness, and seizures. How precisely these are caused by the tumor is not completely understood. There are a number of possibilities, apart from direct compression of the brain by the tumor. The most obvious is edema, but other possibilities include ischemia because of compression of ambient microvasculature, elaboration of biologically active substances from the tumor, and direct microscopic invasion at the tumor-parenchymal interface. These are impossible to study in vivo, and so we need to turn to advanced imaging methods to help characterize them. Understanding these effects is useful because clinical management can be tailored to the individual tumor and it tells us about the basic biology of the effects of compressive brain tumors.

Dr. Mikhail Chernov and his colleagues in Tokyo took 100 patients with meningiomas and characterized the surrounding tissue by proton magnetic resonance spectroscopy (MRS), which measures the relative concentrations of various molecules in the tissue in a noninvasive way (J. Neurol. Sci. 2009;284:168-74). These molecules reflect very sensitively the metabolic activity and structural integrity of the tissue, and localized lesions typically are compared with distant normal brain tissue. Thus, very roughly, the concentration of N-acetyl aspartate (NAA) reflects the structural and metabolic integrity of neurons, choline (Cho) reflects membrane turnover, myoinositol reflects astrocytosis, mobile lipids (Lip) reflect necrosis and myelin disruption, and lactate reflects anaerobic metabolism. These are well-characterized metabolites that have been studied in other brain diseases.

In proton MRS, a small volume of interest (“voxel”) is chosen, and the spectrum derived from MRS is analyzed for the metabolites of interest. The authors chose voxels of 3.4 or 8.0 mL, located not farther than 1 cm from the tumor margin. The results of MRS were correlated with size, degree of edema, and histopathology. They found clear-cut changes in the peritumoral parenchyma by MRS in a limited number of metabolites. The NAA content in the peritumoral tissue was decreased by roughly 10% in the presence of peritumoral edema, compared with the distant normal-appearing brain parenchyma. This was more prominent in larger symptomatic tumors.

Of interest was that Lip was also increased in symptomatic larger tumors that had more edema and were located in the skull base.

DR. CHERNOV

Dr. Mikhail Chernov and his colleagues in Tokyo took 100 patients with meningiomas and characterized the surrounding tissue by proton magnetic resonance spectroscopy (MRS), which measures the relative concentrations of various molecules in the tissue in a noninvasive way (J. Neurol. Sci. 2009;284:168-74). These molecules reflect very sensitively the metabolic activity and structural integrity of the tissue, and localized lesions typically are compared with distant normal brain tissue. Thus, very roughly, the concentration of N-acetyl aspartate (NAA) reflects the structural and metabolic integrity of neurons, choline (Cho) reflects membrane turnover, myoinositol reflects astrocytosis, mobile lipids (Lip) reflect necrosis and myelin disruption, and lactate reflects anaerobic metabolism. These are well-characterized metabolites that have been studied in other brain diseases.

In proton MRS, a small volume of interest (“voxel”) is chosen, and the spectrum derived from MRS is analyzed for the metabolites of interest. The authors chose voxels of 3.4 or 8.0 mL, located not farther than 1 cm from the tumor margin. The results of MRS were correlated with size, degree of edema, and histopathology. They found clear-cut changes in the peritumoral parenchyma by MRS in a limited number of metabolites. The NAA content in the peritumoral tissue was decreased by roughly 10% in the presence of peritumoral edema, compared with the distant normal-appearing brain parenchyma. This was more prominent in larger symptomatic tumors.

Of interest was that Lip was also increased in symptomatic tumors that were larger, had more edema, and were located in the skull base. Other metabolites were less prominently changed. Cho was relatively preserved in skull-based meningiomas but significantly decreased in other locations. Other correlations were noted with symptoms, size, and edema, and with the histology and invasiveness of the tumor. Thus, invasive tumor growth was associated with lower NAA and Cho concentrations. The authors also derived an integrated score of metabolite abnormalities, which can be used to summarize sensitively the degree of abnormality.

Dr. Chernov trained in St. Petersburg in Russia, where he completed medical school in 1989 and his neurosurgical training in 1995, after which he had visiting fellowships at Queen Square in London and the M.D. Anderson Cancer Center in Houston, Tex., U.S.A. He did a neurosurgical fellowship at the Tokyo Women’s Medical University from 2002 to 2007, with a doctoral thesis on proton MRS of metastatic brain tumors and how these changed after gamma knife radiosurgery. He is assistant professor at the Tokyo Women’s Medical University.
CASE STUDY
Watch for Tuberculous Encephalopathy in Endemic Areas

BY SISAY GIZAW GEBRE-MICHAEL, M.D.; MELKAMU DESSIE ADEB, M.D.; AND YOHANNES WOUBISHET WOLDEAMANUEL, M.D.

Introduction
Mycobacterium tuberculosis as a cause of diffuse inflammatory white matter cerebral lesion was initially described in 1958 in India (Dastur et al., Acta Neuropath. 1966;6:311-26). This relatively rare condition, labeled as tuberculous encephalopathy, is characterized by predominantly demyelinating lesion with extensive inflammatory element in diffuse or multifocal areas of the central nervous system (Dastur et al.). In the current study, we describe a case of tuberculous encephalopathy and discuss the relevance of a therapeutic trial in diagnosing this rare disorder in a resource-limited setting.

Case Report
A 13-year-old girl presented to the department of neurology at the Tikur Anbessa Specialized Hospital in Addis Ababa, Ethiopia, with a 3-week history of bilateral progressive weakness with sequelae of the right lower, the right upper, and the left upper limbs. She also developed weakness of left lower facial muscles and urinary incontinence. There were no symptoms of involvement of cognitive, language, visual, or sensory functions, disturbance of consciousness, nor symptoms referable to other organ systems.

A month before onset of her current illness, she had an acute episode of global headache, projectile vomiting, neck pain and stiffness, low-grade intermittent fever, and brief spontaneous inappropriate laughing, all of which improved with a 1-week course of oral dexamethasone 100 mg twice daily for a presumptive diagnosis of endemic typhus. She was fully immunized, had adequate nutritional history, and normal vital signs. She had had no contact with a known open pulmonary tuberculosis patient or person with similarities of tuberculosis patient. Family history was negative for neurological or neuromuscular disease.

There was a left supranuclear facial nerve palsy and slight leftward tongue deviation with a normal active motor function. Examinations of the other cranial nerves, including direct ophthalmoscopic evaluation, were normal. Her limb muscles had normal bulk and showed no abnormal involuntary movement. The right upper, the right lower, and the left upper limbs had significant muscle weakness and spastic muscle tone. She had a loss of vibration and position senses on the right side. Biceps, triceps, brachioradialis, quadriceps, and ankle muscle stretch reflexes were hyperreflexic on the right side with bilateral extensor plantar responses. She had right hemiparetic gait and posture.

Blood chemistry and urinary tests were normal. Hematologic studies showed leukocytosis (3,200/μL, 54% neutrophils; 34% lymphocytes) and elevated erythrocyte sedimentation rate (62 mm/hr). Serum syphilis and HIV-1 testing were negative. A chest radiograph was normal. Magnetic resonance imaging (MRI) of the brain with and without gadolinium revealed multifocal exclusively white matter lesion with associated focal cystic degeneration containing central free fluid and peripheral ring-like enhancement in the hemispheres.

On the basis of local epidemiological grounds, and clinical and radiological evidence, we started her on a treatment trial for central nervous system (CNS) tuberculosis, tuberculous encephalopathy (TBE), with rifampicine, isoniazide, pyrazinamide, and ethambutol (category 2RHZE/4RH, daily) along with I regimen along with a decision by a clinician to treat with antituberculosis chemotherapy.

Diagnosis of CNS tuberculosis should be based on one culture-positive specimen (cerebrospinal fluid [CSF] or neural tissue) or by the presence of histological and clinical evidence of active CNS tuberculosis, along with a decision by a clinician to treat with a full course of tuberculosis chemotherapy (British Infection Society (BIS) Guidelines, December 2008). CSF and neural tissue specimen acid fast bacillus stain and nucleic acid amplification test remain the best rapid diagnostic methods for CNS tuberculosis, according to the guidelines. The difficulty and risk of obtaining stereotactic brain biopsy and lack of sufficient sensitivity of available diagnostic tests means that bacteriological confirmation usually is not possible and the diagnosis of CNS tuberculosis is often presumptive, the guidelines say.

Bacteriological study of autopsy and necropsy specimens of TBE consistently failed to reveal presence of mycobacterium in cerebral lesion (Dastur et al.). Besides delayed antituberculosis treatment of CNS, tuberculosis is strongly associated with death and neurological sequelae, and an empirical therapy is required in patients with possible CNS tuberculosis even before mycobacterial culture result is known (BIS Guidelines; American Thoracic Society/Centers for Disease Control and Prevention/Infectious Diseases Society of America guidelines for treatment of tuberculosis, 2007).

In resource-limited countries, diagnosing CNS tuberculosis is even more difficult and needs an alternative approach. In the presence of strong clinical evidence of active CNS tuberculosis and background high tuberculosis prevalence, tuberculosis risk factors and additional suggestive laboratory features, including tubercul skin test, CSF adenosine deaminase, interferon-gamma release assays, and brain MRI, might justify an empiric full course of tuberculosis chemotherapy (BIS Guidelines).

Skin testing is variable (patients from high tuberculosis prevalence areas are more likely to have positive tests with unrelated illness). MR spectroscopy has shown the most promise in differentiating CNS tuberculosis from other causes of ring-enhancing brain lesions (BIS Guidelines).

Although therapeutic response is a bad diagnostic aid, diagnosis of CNS tuberculosis can be inferred from clinical and radiological improvement consistent with response to treatment, and the regimen can be continued to complete the standard course of tuberculosis chemotherapy (ATS/CDC/IDSA).

The incident case presented with clinical and radiologic features suggestive of TBE with complete clinical and significant radiological improvement with antituberculosis treatment. The prevalence of tuberculosis and rarity of alternative diagnoses also supported our clinical diagnosis of TBE.

Conclusion
In resource-limited countries with high prevalence of tuberculosis, the diagnosis of CNS tuberculosis, including TBE, can be made with compatible clinical and radiologic features and improvements to antituberculosis chemotherapy.
Books and journals with a global perspective

“**A timely and useful reference**”

- Expertly covers the agents that are responsible for emerging and neglected diseases and those that can be used as biotreats
- Explains the vaccine development pathway, vaccine manufacturing and regulatory issues that are critical
- Chapters contain maps of the world showing where that particular disease is naturally found

The Journal of the Neurological Sciences provides a medium for the prompt publication of studies on the interface between clinical neurology and the basic sciences. Emphasis is placed on sound scientific developments which are or will soon become relevant to the clinician.

www.elsevier.com/jns

The Journal of Neuroimmunology affords a forum for the publication of works applying immunologic methodology to the furtherance of the neurological sciences. The scope of the Journal is broad, covering both research and clinical problems of neuroscientific interest.

www.elsevier.com/jni

RABIES

SECOND EDITION

2007

Hardback/680 pages
ISBN: 97801236593662
$140.00

BUY ONLINE TODAY AT:
elsevierdirect.com/97801236593662

VACCINES

FOR BIODEFENSE AND EMERGING AND NEGLECTED DISEASES

2009

Hardback/1488 pages
ISBN: 9780123694089
$225.00

BUY ONLINE TODAY AT:
elsevierdirect.com/9780123694089

“**excellent, well-referenced book**”

- A unique global perspective on rabies where dog rabies is responsible for killing more people than yellow fever, dengue fever, or Japanese encephalitis
- Over 7 million people are potentially exposed to the virus annually and about 50,000 people, half of them children, die of rabies each year
- Covers bat rabies which is now the most prominent source of human rabies in the New World and Western Europe
- 40% updated material illustrates new approaches to the therapy of human rabies and issues involving organ and tissue transplantation

Inhaled Migraine Drug Quickly Relieves Pain

BY MICHELE G. SULLIVAN
Elsevier Global Medical News

PHILADELPHIA — An inhaled form of dihydroergotamine provided significant relief of migraine pain, with sustained pain reduction and few adverse events, according to a phase III, placebo-controlled trial.

The drug conferred 4 hours of pain relief on 65% of those who took it; by 48 hours later, 39% still reported pain relief, Dr. Stephen D. Silberstein reported at the International Headache Congress.

Dihydroergotamine has traditionally been used in both an oral form and as an infusion for migraine. The inhaled version passes directly into the bloodstream through the lung, working much more quickly, said Dr. Silberstein, director of the Jefferson Headache Center at Thomas Jefferson University in Philadelphia. It also bypasses the possible problem of nausea that some patients vomit with an undusted tablet.

The FREEDOM 301 study randomized 903 patients with severe, recurring migraine to either a placebo inhaler or to the inhaled dihydroergotamine; 792 were included in the intent-to-treat analysis. Their mean age was 40 years; their migraine to either a placebo inhaler or to undigested tablet.

The primary end point was pain relief at 2 hours. A pain curve separation began at 30 minutes after dosing, but the groups were not significantly different at that time. At 1 hour, differences became significant, with 59% of the active group and 35% of the placebo group comparible with those in the placebo group, Dr. Silberstein said.

Dr. Silberstein also presented several subanalyses examining the drug’s effect on the active group and 28% of the placebo group reporting relief.

At 2 hours, pain relief was present in 59% of the active group and 35% of the placebo group—a significant difference. Significantly more patients treated with dihydroergotamine than with placebo had sustained pain relief at 24 hours (44% vs. 20%) and 48 hours (36% vs. 17%).

Freedom from pain was an important secondary end point. Again, significantly more of those taking the study drug were free of pain at 2 hours (28% vs. 10%), 4 hours (39% vs. 17%), 24 hours (23% vs. 7%), and 48 hours (18% vs. 6%).

Treatment with dihydroergotamine also significantly increased the percentage of patients who were free from photophobia, compared with placebo (33% vs. 34%).

Significantly more patients who received the drug reported being free from photophobia as well (47% vs. 27%). The drug had no significant impact on nausea—67% of the study drug group and 59% of the placebo group were free of it.

Adverse events were mild and occurred in 25% of the placebo group and 31% of the study drug group. Upper respiratory infections, sinusitis, and nasopharyngitis occurred in similar numbers. The most commonly reported adverse event was a complaint about the medication’s taste. "Triptan-like adverse events were rare, with rates in the active group comparable with those in the placebo group," Dr. Silberstein said.

The study consisted of a 28-day washout period, during which patients kept a daily headache diary, followed by 8 weeks of randomized treatment. Two additional 8-week, open-label, follow-up trials are underway.

TBI • from page 1

Imaging Could Help Prognosis

provided effective neuroprotection in animal models of TBI, he said. However, none that has undergone testing in animal models of TBI, he said. Howev-

Dr. Diaz-Arrastia and his colleagues performed DWI on 99 patients with TBI. Of these, the study identified corpus callosum lesions in 84%. It was able to differentiate between patients with primarily cytotoxic lesions (54%) and those with vasogenic lesions (46%).

"We also found that the volume of these brain lesions, irrespective of loca-

tion, explained about 28% of the variance in outcome among these patients," he said. "It is a relatively modest correlation with outcome, but it shows that what we are measuring is something that is functionally important and affects outcome." Diffusion tensor imaging (DTI) shows how water tracks along the axons, giving a good view of white matter lesions. Follow-up scans on TBI patients have shown tanzilating clues to the possible causes of their long-term problems.

"When we scan patients within a day or two of injury, we may see subtle changes in the parameters. But if we come back 6 months later and rescan, we see much greater dropout of axons. Initially, the patient may be in a coma, and when they are scanned later they are usually much improved and walking around, albeit with problems with memory or executive function. So this tells us that something is happening weeks or months after the injury that results in white matter dropout.

Another technique moving into traumatica ma field is quantitative volumetric assessment of the cortical field. This technique measures the thickness and volume of different cortical and subcortical regions.

"In our patients, we found that the brain shrinks overall after a severe traumatic injury, but that not all structures shrink at the same rate. Some cortical regions shrink very little, while others, like the hippocampus, appear particularly sensitive to injury."

This finding makes sense given the cognitive and mood issues that TBI patients can experience, he added.

On average, whole brain volume and both gray and white matter volumes decreased by 3%-10% in the first few months after severe TBI. In comparison, Dr. Diaz-Arrastia said, the rate of atrophy for patients with Alzheimer’s disease is about 1%-2% a year.

Functional MRIs also provide some clues that the injured brain sustains long-term problems. In the resting state, the blood oxygen level dependent signal typically shows seemingly random fluctuations when the brain is at rest. But recent studies have shown that these fluctuations actually represent the communication between brain regions that work together.

"In our patients, we found a very high indication that the functional connectivity between the hippocampus was greatly reduced," compared with controls, he said.
MEETING ROUNDUPS

Parkinson’s Experts, Patients Mix It Up

The mix of attendees, from experts to PWP, presented a unique opportunity for them to interact.

BY MADHURI BEHARI, M.D.

The 2nd Asian and Oceanian Parkinson’s Disease and Movement Disorders Congress (AOPMC) and the 7th International Symposium of the Asian and Pacific Parkinson’s Association (APPA) were held in New Delhi, India, in February.

The gathering was hosted by the New Delhi–based All India Institute of Medical Sciences and The Movement Disorder Society (MDS) at the city’s India Habitat Centre. It was supported by the World Health Organization, the Indian Academy of Neurology, the Delhi Neurological Association, and the Delhi Ministry of Health and Family Welfare.

The AOPMC was attended by 330 delegates from India and abroad. The APPA was attended by 97 patients and an equal number of caregivers, and 189 allied health workers, such as nurses, physiotherapists, occupational and speech therapists, social scientists, and nutrition and diet specialists. An additional 17 physicians, comprising the invited speakers and the chairpersons, came from the Asian/Oceanian region, India, the United States, and the United Kingdom.

It was the first time a congress specifically for neuroscientists, researchers, persons with Parkinson’s (PWP), their caregivers, and allied health workers was held in India, and the mix of attendeess provided a unique opportunity for them to interact. The content material spanned the range of movement disorders, including chorea, tremors, progressive supranuclear palsy (PSP), multisystem atrophy (MSA), corticobasal ganglionic degeneration, psychogenic movement disorders, and dystonias.

At the 2nd AOPMC, there were two industry-sponsored sessions on major areas of movement disorders—continuous dopamine stimulation and botulinum toxin for the management of dystonias and other hyperkinetic disorders.

Two breakfast sessions focused on an overview of PSP and MSA. There were seven plenary sessions, including four on movement disorders in Asia, dealing with Lou Gehrig syndrome, a dystonia-like genetic disorder specific to the Philippines; dystonia in Asia; infections and movement disorders; and metals and movement disorders, with particular emphasis on iron-related disorders and Wilson’s disease, which is prevalent in India.

Another plenary session, on interventions in Parkinson’s disease, covered recent developments such as deep brain stimulation and cell-based and gene therapy in Parkinson’s disease. An educational course on managing Parkinson’s disease covered its diagnosis, early versus late treatment with levodopa, autonomic disturbance and its management, motor complications and their management, psychoses and depression, and optimizing long-term therapy.

The 7th APPA program had two parallel sessions—2 half-days for PWP and their caregivers, and 2 full days for allied health personnel. Dr. Mary Baker, past president of the European Parkinson’s Disease Association spoke about treating PWP in Europe and the role of caregivers. There were four sessions for PWP and five sessions and three highly interactive workshops for allied health personnel.

It was a matter of great honor that Dr. Kiran Wala, the minister of health and social welfare of the National Capital Territory of Delhi inaugurated the APPA conference. The AOPMC was inaugurated by Dr. Anthony E. Lang, president of the MDS.

Dr. Behari is professor and head of the department of neurology at the All India Institute of Medical Sciences in New Delhi, India. She served as president and chairman of the organizing committee for this joint meeting.

Asian, Oceanian Neurophysiologists Gather

BY KWANG-WOO LEE, M.D.

As chairman of the organizing committee of the 2009 Asian and Oceanian Congress of Clinical Neurophysiology, I would like to thank everyone for joining us at the congress in Seoul earlier this year.

The theme of the gathering, which was hosted by the Korean Society for Clinical Neurophysiology, was ‘AOC-CN in Cultural Variety: Momentum of Revival.” About 700 specialists in clinical neurophysiology and allied health workers participated in the congress.

There is a growing global interest in neuroscience. With the rapid advancement in technology and bioengineering, the field of clinical neurophysiology is constantly changing and expanding, and it is important that specialists in related fields are able to gather to share the latest research data to ensure that everyone keeps current. This year’s AOC-CN provided us with these opportunities by acting as a hub of exchange for the field of clinical neurophysiology.

The program for the 3-day congress included plenary lectures, workshops, meet-the-expert panels, symposia, and 236 presentations on internationally relevant topics in neurophysiology. Participation was eager, and the quality of the presentations—some of which were landmark—and the ensuing discussions reflected the dynamism of the field.

Of the many superb abstracts presented, I would highlight two as they introduced new concepts or clinical applications: one, from Dr. Hae-Won Shin of Yonsei University College of Medicine in Seoul and colleagues, dealt with interhemispheric transfer of paired associative stimulation-induced plasticity in the motor cortex; another, by Dr. Joy Vijayan of National University Hospital in Singapore and colleagues, explored using combined Doppler and B-mode sonography to diagnose carpal tunnel syndrome.

It was an honor to host such a highly regarded international conference. I hope that in the future the AOC-CN will be able to incorporate Europe and the Americas into its primary area of activity. I wish to express my deepest gratitude to the members of the organizing committee, and to the members of the AOC-CN, the executive members of the International Federation of Clinical Neurophysiology, and our sponsors. I look forward to meeting you all again in 4 years’ time at the next AOC-CN in Bali, Indonesia.

Dr. Lee was chairman of the organizing committee for the 2009 Asian and Oceanian Congress of Clinical Neurophysiology held in Seoul in April. He is professor of neurology at Seoul National University.
The ultimate resources to be kept up to date on the latest research in Alzheimer’s and Parkinson’s Diseases

For immediate access to the journal articles, visit www.sciencedirect.com!