Researchers are now able to wirelessly record the directly measured brain activity of patients living with Parkinson’s disease and to then use that information to adjust the stimulation delivered by an implanted device. Direct recording of deep and surface brain activity offers a unique look into the underlying causes of many brain disorders; however, technological challenges up to this point have limited direct human brain recordings to relatively short periods of time in controlled clinical settings.

This project, published in the journal Nature Biotechnology, was funded by the National Institutes of Health’s Brain Research Through Advancing Innovative Neurotechnologies (BRAIN) Initiative.

This is really the first example of wirelessly recording deep and surface human brain activity for an extended period of time in the participants’ home environment. It is also the first demonstration of adaptive deep brain stimulation at home.
Kari Ashmont, Ph.D., project manager for the NIH BRAIN Initiative.

Deep brain stimulation (DBS) devices are approved by the U. S. Food and Drug Administration for the management of Parkinson’s disease symptoms by implanting a thin wire, or electrode, that sends electrical signals into the brain. In 2018, the laboratory of Philip Starr, M.D., Ph.D. at the University of California, San Francisco, developed an adaptive version of DBS that adapts its stimulation only when needed based on recorded brain activity. In this study, Dr. Starr and his colleagues made several additional improvements to the implanted technology.

This is the first device that allows for continuous and direct wireless recording of the entire brain signal over many hours. That means we are able to perform whole brain recording over a long period of time while people are going about their daily lives.
Dr Philip Starr, M.D., Ph.D.

The implications of this type of recording are significant. The brain activity patterns (neural signatures) normally used to identify problems such as Parkinson’s disease symptoms have traditionally been recorded in clinical settings over short periods of time. This new technology makes it possible to validate those signatures during ordinary daily activities.    

Another advantage to recording over long periods of time is that distinct changes in brain activity (biomarkers) that could predict movement disorders can now be identified for individual patients. Ro’ee Gilron, Ph.D., a postdoctoral scholar in Dr. Starr’s lab and first author of this study, explained that this allows for a level of customized DBS treatment that was impossible to achieve previously.

We have had patients approach us with concerns regarding privacy. Although we are not at the point where we can distinguish specific normal behaviors from brain activity recording, it is an absolutely legitimate concern. We have told patients to feel free to remove their wearable devices and to turn off their brain recordings whenever they engage in activities they would like to keep private.
Dr Starr

One unforeseen benefit of this study was that, because it required little to no direct contact with clinicians following surgery, it was ideally suited for the social distancing that is crucial during the COVID-19 pandemic. The technologies used for remote patient monitoring and telehealth were originally designed for the convenience of study subjects, but they have broader applications to other research projects that have been stalled due to COVID-19.

The importance of studying behavior in a natural environment such as the home as it relates to neural activity was emphasized in a recent BRAIN 2.0 neuroscience report. Dr. Ashmont stressed that this study is a significant step in that direction and is going to help scientists understand not only disorders but also the neural representation of behaviors in general.


View Full Article