

Santiago, Chile, October 31 - November 5, 2015

Modern Management of Multiple Sclerosis

Prof Alan J Thompson UCL Faculty of Brain Sciences Institute of Neurology, Queen Square London, UK

alan.thompson@ucl.ac.uk

Santiago, Chile, October 31 - November 5, 2015

WCN 2015

Faculty Disclosure

	No, nothing to disclose
\checkmark	Yes, please specify:

Company Name	Honoraria/ Expenses	Consulting/ Advisory Board	Funded Research	Royalties/ Patent	Stock Options	Ownership/ Equity Position	Employee	Other (please specify)
MedDay	X	X						
Biogen Idec (Optum Insight)	Х	X						
Eisai	Х	X						
Novartis	Х	Х						Lecturing
Теvа	Х							Lecturing
EXCEMED	Х							Lecturing
SAGE Publications	×							Editor-in-Chief, Multiple Sclerosis Journal

Prevalence of MS

2013 : 2.3 million

MS Is a Disabling Condition

QOL EDSS and utility^a have shown a significant inverse relationship¹ Mortality

Mortality ratio of MS exceeds CV disease,^{2,b} stroke,^{3,c} and early breast cancer⁴

MS has a negative impact on...

Healthcare costs Bulk of cost attributed to services (29%) and long-term sick leave and early retirement (30%)^{6,d}

Employment

50% of patients with MS are unemployed 10 years after diagnosis⁵

Relationships

Compared with general population, patients with MS have a higher probability of separating/divorcing and doing so sooner⁵

CV=cardiovascular; EQ-5D=EQ-5D=EuroQol 5-Dimension questionnaire.

- 1. Orme M et al. Value Health. 2007;10:54-60.
- 2. De Marco R et al. Diabetes Care. 1999;22:756-761.
- 3. Petty DW et al. Mayo Clin Proc. 2005;80:1001-1008.
- 4. Hooning MJ et a. Int J Radiat Oncol Biol Phys. 2006;64:1081-1091.
- 5. Pfleger CC et al. Mult Scler. 2010;16:121-126.
- 6. Berg J et al. Eur J Health Econ. 2006;7 (suppl 2):S75-S85.

- a. Utility measures derived from EQ-5D
- b. In patients with type 2 diabetes
- c. In patients with valvular heart disease in Olmsted County. Minnesota
- MS patients with EDOOLSO
- d. MS patients with EDSS ≥6.0

Natural History of MS

Recommended Diagnostic Criteria for Multiple Sclerosis: Guidelines from the International Panel on the Diagnosis of Multiple Sclerosis

W. Ian McDonald, FRCP,¹ Alistair Compston, FRCP,² Gilles Edan, MD,³ Donald Goodkin,⁴ Hans-Peter Hartung, MD,⁵ Fred D. Lublin, MD,⁶ Henry F. McFarland, MD,⁷ Donald W. Paty, MD,⁸ Chris H. Polman, MD,⁹ Stephen C. Reingold, PhD,¹⁰ Magnhild Sandberg-Wollheim, MD,¹¹
William Sibley, MD,¹² Alan Thompson, MD,¹³ Stanley van den Noort, MD,¹⁴ Brian Y. Weinshenker, MD,¹⁵ and Jerry S. Wolinsky, MD¹⁶

Diagnostic Criteria for Multiple Sclerosis: 2005 Revisions to the "McDonald Criteria"

Chris H. Polman, MD, PhD,¹ Stephen C. Reingold, PhD,² Gilles Edan, MD,³ Massimo Filippi, MD,⁴ Hans-Peter Hartung, MD,⁵ Ludwig Kappos, MD,⁶ Fred D. Lublin, MD,⁷ Luanne M. Metz, MD,⁸ Henry F. McFarland, MD,⁹ Paul W. O'Connor, MD,¹⁰ Magnhild Sandberg-Wollheim, MD,¹¹ Alan J. Thompson, MD,¹² Brian G. Weinshenker, MD,¹³ and Jerry S. Wolinsky, MD¹⁴

Diagnostic Criteria for Multiple Sclerosis: 2010 Revisions to the McDonald Criteria

Chris H. Polman, MD, PhD,¹ Stephen C. Reingold, PhD,² Brenda Banwell, MD,³
 Michel Clanet, MD,⁴ Jeffrey A. Cohen, MD,⁵ Massimo Filippi, MD,⁶ Kazuo Fujihara, MD,⁷
 Eva Havrdova, MD, PhD,⁸ Michael Hutchinson, MD,⁹ Ludwig Kappos, MD,¹⁰
 Fred D. Lublin, MD,¹¹ Xavier Montalban, MD,¹² Paul O'Connor, MD,¹³
 Magnhild Sandberg-Wollheim, MD, PhD,¹⁴ Alan J. Thompson, MD,¹⁵
 Emmanuelle Waubant, MD, PhD,¹⁶ Brian Weinshenker, MD,¹⁷ and Jerry S. Wolinsky, MD¹⁸

MS Survey of 1,500 people with MS in 2015

'Survey reveals many people are misdiagnosed and live in uncertainty for years before MS diagnosis'

- 1 in 4 people with MS misdiagnosed with a trapped nerve
- 1 in 10 people with MS told they'd had a stroke
- 39% of people with MS waited over a year for diagnosis
- 25% visit GP four or more times before referred

The unmet need is massive

Disease modification

MRI, relapse reduction, delayed onset of CDMS, delayed disease progression, disease activity free, delayed onset of SPMS, prevention of SPMS

Anti-inflammatory	Neuroprotective	Neurorestorativ
-		e strategies

Symptomatic therapies

Cognition	Fatigue	Spasticity
Bladder/Bowel	Mobility	Mood

MS prevention						
Vitamin D	Smoking	EBV				

AUTHORS Dr Carmen Tur

MD MSc PhD

Neurologist and Honorary Clinical

Associate, National

Hospital for Neurology and Neurosurgery, Queen Square, Clinical

Research Associate and Postdoctoral ECTRIMS Fellow, MS Queen Square

Centre, UCL Institute of Neurology, London, UK

Professor Alan J Thompson FMedSci FRCP FRCPI

Honcary Consultant Neurologis National Hospital for Neurology and Neurosurgery, Queen Square, London, UK FIGURE 1 Axial FLAIR Image that shows typical MS lesions: small and ovoid hyperintensities in T2-weighted secuences. Here

they are located in the periventricular white matter and juxtacortical white matter

Garfield Weston Professor of Clinical

Neurology & Neurorehabilitation, Dean of the Faculty of Brain Sciences, School of Life & Medical Sciences.

Guidelines in MS 2014 -15

- NICE guidelines
 - NHS England
- Association of British Neurologists

Early accurate diagnosis crucial in multiple sclerosis

It is the most frequent disabling neurological disease among young adults, affecting around 2.3 million people worldwide.¹ Around 100,000 people² in the UK have MS, giving an average prevalence of 1.5/1,000 (varying from 1.2/1,000 in England and Wales to 1.9/1,000 in Scotland).³

In about 85% of cases, MS starts with an acute neurological episode, a clinically isolated syndrome (CIS), considered to be the first clinical episode of relapsing-remitting MS (RMS), It is characterised by the presence of acute relapses, after which there is normally a good functional recovery.⁴ About 15-20 years after symptom onset, most patients develop secondary progressive MS (SPMS), characterised by a gradual and irreversible neurological decline.⁵ Although relapses can still be present in SPMS, the accrual of disability is typically independent of any relapses. In about 15% of cases, MS starts with progressive neurological deterioration, i.e. primary progressive

MS (PPMS).⁶ MS affects women more frequently than men, with a ratio of 2-31.⁷⁸ Age at disease onset varies depending on the type of MS. In RRMS the disease generally starts in the late 20s. Symptom onset in those with PPMS occurs around the age of 40.⁵⁸ Once progression starts, the overall rate of neurological decline is similar for both SPMS and PPMS. Yet this progression rate may vary greatly between individuals and predicting What are the different types of MS?

How should MS be diagnosed?

What are the management approaches?

which patients will follow a more rapid accrual of disability is still a challenge.

Recently, the International Advisory Committee on Clinical Trials of MS has re-examined the MS disease phenotypes.⁹ Although the main phenotype categories have not changed, these are now described in terms of the amount of disease activity observed, either inflammatory activity, i.e. presence of relapses and/or active lesions on MRI or neurodegenerative activity, i.e. disease progression. The goal of treatment in MS should be to prevent all disease activity.

The cause of MS is unknown. It is believed that a combination of risk factors can trigger an autoimmune response against the CNS leading to the development of MS. Risk factors can be either genetic or environmental and»

Management

Education

Treatment & monitoring

- Disease-modifying treatments (DMD)
 - Treatment of relapses
 - Symptomatic treatment

Multidisciplinary approach

Self-management

Management : Education

Education should **<u>aim</u>** at:

•Improving the <u>understanding of the</u> <u>disease</u>

 Increasing the knowledge about <u>healthy lifestyles</u> and their consequences

 Increasing awareness of <u>noxious</u> <u>factors</u> such as smoking

•Promoting patients' empowerment

Management: Multidisciplinary approach

- Comprehensive annual assessments
- Focused on:
 - Mobility, balance, and falls
 - Mobility aids including wheelchair assessments
 - Use of arms and hands
 - Muscle spams and stiffness
- Healthcare professionals involved
 - Consultant neurologists
 - MS nurses
 - Physiotherapists, occupational therapists, speech and language therapists, and continent nurses
 - Psychologists and social care specialists
 - Dieticians

Management: Self-management

- Patients are <u>aware</u> of their condition and their symptoms
- Patients can adopt <u>self-management strategies</u> to solve day-to-day issues and gain <u>independence</u>
- Patients are at the <u>centre of all decision-making</u> processes
- Important decisions include
 - Healthy lifestyle
 - Start of treatment and compliance
 - Stop of treatment
 - Pregnancy and other family-related decisions

Dimensions of Wellness

The dimensions of wellness act and interact in ways that contribute to well-being. They are influenced by health and other factors and involve lifestyle behaviors and activities

Top Traditional & Social Media Topics July 2014- June 2015

95,905 mentions

medication

44.881 mentions

6.9%

30.4%

wellness

197.051 mentions

22,794 mentions

Social Media Wellness Themes

Current Wellness Evidence Diet, Exercise and Mood Interventions

- Insufficient evidence to establish efficacy or effectiveness in MS
 - Specific diets
 - Dietary supplements
 - Vitamin D
 - PUFA's
 - Specific exercise program
 - Mindfulness or other practices to reduce stress or depressive symptoms.
- Poor identification of depressive symptoms and major depressive disorder

NeuroDirect

HEALTHCARE WITHOUT WALLS

NeuroView

NeuroMail

Integrated Care Pathway

Key Elements of Self Management

1. Electronic Health Records

2. Goal Orientated Care Plan

3. Motivational coaching

OptiMiSe Vision

- •Own electronic records
- •Goal orientated care plan
- Information & Evidence
- •Ability to self-assess
- Ability to Benchmark to Peers
- Access to Motivational Coach

Therapeutic era of Multiple Sclerosis

- 1993 First positive trial of therapeutic agent
- 1998 Four agents available reduce relapse rate
- 2004 Second line agent licensed for more aggressive MS
- 2005 Withdrawn because of serious side-effect
- 2006 Reintroduced
- 2010 First oral agent licensed
- 2015 12 treatments

Early treatment seems to be desirable

Figure: http://multiple-sclerosis-research.blogspot.co.uk/2012/06/research-dmt-slow-onset-of-progression.html Accessed 4 June 2013. Based on a review of Bergamaschi R *et al. Mult Scler* 2012

Brain health Time matters in multiple sclerosis

Gavin Giovannoni Helmut Butzkueven Suhayl Dhib-Jalbut Jeremy Hobart Gisela Kobelt George Pepper Maria Pia Sormani Christoph Thalheim Anthony Traboulsee Timothy Vollmer

Preparation of these recommendations was funded by an educational grant from F. Hoffmann-La Roche, who had no editorial influence on the content.

DRUGS LICENCED TO TREAT RELAPSING MS

ON THE WAY.....

- ✓ Interferon beta 1a s.c.
- \checkmark Interferon beta 1 a pegylated
- ✓ Interferon beta 1b s.c.
- ✓ Interferon beta 1a i.m.
- ✓ Glatiramer acetate 40 tiw
- ✓ Mitoxantrone
- ✓ Natalizumab
- ✓ Fingolimod
- ✓ Teriflunomide
- ✓ DMF
- ✓ Alemtuzumab
- ✓ Daclizumab

Timeline of MS Treatment Approvals

Treatment

Treatment & monitoring – DMD: First-line treatments

Drug, administration	Reduction (%) in clinical activity (relapses) in clinical trials		Main side effects	Recommended safety monitoring
route	Vs. placebo Vs. first-line DMD			
Beta-interferon, 30% NA SC or IM		NA	-Flu-like symptoms -Mild-moderate lymphopenia -Elevated liver enzymes -Hypersensitivity	-Regular blood tests -Regular brain MRI scans
Glatiramer acetate, SC	30%	NA	-Immediate post-injection reaction -Local injection-site skin reaction -Hypersensitivity	-Regular brain MRI scans
Dimethyl fumarate, oral	45-50%	22%	-Flushing -Gastrointestinal events -Lymphopenia -Elevated liver enzymes	-Regular blood tests -Regular brain MRI scans
Teriflunomide, oral	40-50%	No proved superiority of teriflunomide vs. SC beta- interferon	-Hair loss -Elevated liver enzymes -Leukopenia -Peripheral neuropathy -Elevated blood pressure	-Regular blood tests -Regular brain MRI scans

Oral fingolimod – mechanism of action

CNS, central nervous system; MS, multiple sclerosis; S1P, sphingosine 1-phosphate

Natalizumab: A Humanized, Monoclonal Antibody (mAb) Against α4 Integrins

Complementarity-Determining Regions

- CDR grafted from murine Ab
- Human IgG4 framework
- Retains full potency

Framework

NATALIZUMAB

Alemtuzumab

Treatment

Treatment & monitoring – DMD: Second-line treatments

Drug, administration	Reduction (% activity (relaj trials	oses) in clinical	Main side effects	Recommended safety monitoring	
route	Vs. placebo	Vs. first-line DMD		monitoring	
Fingolimod, oral	55-60%	51-52%	-Bradycardia and other heart conduction abnormalities -Lymphopenia -Macular oedema -Elevated liver enzymes -Elevated blood pressure	 -Regular blood tests -Regular brain MRI scans -Continuous ECG monitoring during first 6 hours after first dose -OCT exam -Vaccination against VVZ is recommended before starting fingolimod treatment 	
Natalizumab, IV	68%	NA	 -Perfusion reaction (nausea, vomiting, generally mild) -Hypersensitivity -Immunogenicity (antibodies against natalizumab) -Infections, including PML -Elevated lymphocyte count in peripheral blood 	-Regular blood tests -Regular brain MRI scans (i.e. every year or more frequently, every 6 or 3 months, if high risk of PML)	
Alemtuzumab, IV	NA	55%	-Perfusion reaction (marked) -Marked lymphopenia -Infections -Secondary autoimmunity	-Regular blood tests -Regular urine tests -Regular brain MRI scans	

PML in association with Natalizumab

Cells with inclusions have positive nuclear signal for JC virus

Visual Map of MS Clinical Trials

MS Trials by Patient Population

Despite the identified need for more clinical trials in PPMS and SPMS, RRMS remains the main focus for the Pharma industry.

Other

Urgent need to find solutions for people with Progressive MS

- Large worldwide impact: at least half of all (2.3million) MS patients
- Currently no effective treatment for progressive MS
- Onset of progression is the main determinant of disability
- Finding treatments for progressive MS is one of the top priorities for patients
- Every time another therapy is approved for RRMS, a large proportion of our constituents feel left out

Onset of progressive phase determines disability Scalfari et al Neurology 2011

Challenges

- Defining phenotype
- Clarifying pathological mechanisms underpinning progression
- Identifying treatment targets
- Outcomes/Biomarkers
- Trial design

VIEWS & REVIEWS

Defining the clinical course of multiple sclerosis The 2013 revisions

Fred D. Lublin, MD Stephen C. Reingold, PhD Jeffrey A. Cohen, MD Gary R. Cutter, PhD Per Soelberg Sørensen, MD, DMSc Alan J. Thompson, MD

Neurology® 2014;83:278-286

MS Clinical Forms: revised classification

Figure 2 The 1996 vs 2013 multiple sclerosis phenotype descriptions for progressive disease

Lublin FD et al. Neurology. 2014;83:1-9.

*Activity determined by clinical relapses assessed at least annually and/or MRI activity (contrast-enhancing lesions; new and unequivocally enlarging T2 lesions). **Progression measured by clinical evaluation, assessed at least annually. If assessments are not available, activity and progression are "indeterminate." MS = multiple sclerosis; PP = primary progressive; PR = progressive relapsing; SP = secondary progressive.

Trials in Progressive MS

Phase II

- –MS STAT high dose simvastatin
- -PROXIMUS Trial oxcarbazepine in SPMS
- -MS Smart Trial riluzole, amiloride, fluoxetine in SPMS
- -SPRINT-MS ibudilast in PPMS/SPMS
- -Biotin in SP/PP MS

Phase III

- -INFORMS fingolimod in PPMS
- -ASCEND natalizumab in SPMS
- -ORATORIO ocrelizumab (related to rituximab) in PPMS
- -EXPAND siponimod (related to fingolmod) in SPMS
- -ARPEGIO laquinimod in PPMS

Others

Rituximab, mesenchymal stem cells, mastitinib, lipoic acid, erythropoietin, hydroxyurea, idebenone, minocycline, anti-nogo, anti-lingo

Simvastatin trial in secondary progressive MS

- Placebo-controlled, 2-year trial
- 70 patients/arm (simvastatin 80mg/day or placebo)
- 42% ↓rate of brain atrophy in simvastatin-treated patients (0.30% vs. 0.59% per year)
- No effect on relapses or new T2 lesions

Key PPMS clinical trials

Completed, ongoing and planned trials in primary progressive MS (PPMS)

• PROMiSE (N=943) and OLYMPUS (N=439) are the two largest randomized trials in PPMS patients completed to date

Novartis International AG Novartis Global Communications CH-4002 Basel Switzerland http://www.novartis.com

MEDIA RELEASE • COMMUNIQUE AUX MEDIAS • MEDIENMITTEILUNG

Novartis provides update on fingolimod Phase III trial in primary progressive MS (PPMS)

 Phase III study in primary progressive multiple sclerosis (PPMS) did not meet the primary endpoint

Ocrelizumab

- Fully humanised anti-CD20 monoclonal antibody
- Targets different epitopes to rituximab
- Stronger Ab-dependent cell-mediated cytotoxicity and less complement dependent cytotoxicity than rituximab

Genentech's Ocrelizumab First Investigational Medicine to Show Efficacy in People with Primary Progressive Multiple Sclerosis in Large Phase III Study

Genentech, a member of the Roche Group), today announced positive results from a pivotal Phase III study that evaluated the investigational medicine ocrelizumab in people with primary progressive multiple sclerosis (PPMS). The study (ORATORIO) <u>met its primary endpoint</u>, showing treatment with ocrelizumab significantly reduced the progression of clinical disability sustained for at least 12 weeks compared with placebo, as measured by the EDSS.

September 27, 2015

Neuroprotection

Repair/Remyelination

Lifestyle

Rehabilitation

Enhancing plasticity

Treatment target Neuroprotection: sodium channel blockers

Phenytoin is neuroprotective in acute optic neuritis: Results of a phase 2 randomized controlled trial

R Kapoor^{1, 2}, R Raftopoulos^{1,2}, S Hickman⁴, A Toosy^{1,2}, B Sharrack⁴, S Mallik^{1,2}, D Altmann², P Malladi¹, M Koltzenburg^{1,2}, C Wheeler-Kingshott², K Schmierer³, G Giovannoni³, and DH Miller²

National Hospital for Neurology and Neurosurgery¹, UCL Institute of Neurology², and Queen Mary University of London³, London UK, and Royal Hallamshire Hospital, Sheffield UK⁴

Primary outcome: RNFL

- Active-placebo adjusted difference 7.15 μm (95% CI 1.08, 13.22 p=0.02)
- 30% reduction of atrophy in active group

 PP comparison: Active-placebo adjusted difference 7.40 μm (95% CI 0.76, 14.04 p=0.03)

Bars are standard errors around the unadjusted group means

Biotin targets two mechanisms that may underpin progressive MS

Primary Endpoint results

	MD1003	Placebo	p-value ¹
	n(%)	n(%)	
ITT population	N=103	N=51	
	13 (12.62%)	0 (0.0%)	0.0051
Per protocol			
population	N=87	N=42	
	13 (14.9%)	0 (0.0%)	0.0093

(1) Fisher's Exact test

- Primary endpoint met with EDSS: 76.9%
- Primary endpoint met with TW25: 38.5%

<u>Multiple Sclerosis-Secondary</u> Progressive <u>Multi-Arm</u> <u>Randomisation Trial</u>

MS-SMART Trialists

Dr Jeremy Chataway

MULTI-ARM trials: an effective way of speeding up the therapy evaluation process!

Interventions

Amiloride 5 mg bd

Riluzole 50mg bd

Fluoxetine 20mg bd

Autologous mesenchymal stem cells for the treatment of secondary progressive multiple sclerosis: an open-label phase 2a proof-of-concept study

Peter Connick,* Madhan Kolappan,* Charles Crawley, Daniel J Webber, Rickie Patani, Andrew W Michell, Ming-Qing Du, Shi-Lu Luan, Daniel R Altmann, Alan J Thompson, Alastair Compston, Michael A Scott, David H Miller, Siddharthan Chandran

Lancet Neurol 2012; 11: 150-56

Visual system of 10 patients with secondary progressive MS

↓VEP latency (p=0.016)

↑optic nerve area (p=0.006)

Progressive MS Alliance

Mission

To expedite the development of effective disease modifying and symptom management therapies for progressive forms of multiple sclerosis

New Perspectives

Setting a research agenda for progressive multiple sclerosis: The International Collaborative on Progressive MS

Robert J. Fox¹, Alan Thompson², David Baker³, Peer Baneke⁴, Doug Brown⁵, Paul Browne⁴, Dhia Chandraratna⁴, Olga Ciccarelli², Timothy Coetzee⁶, Giancarlo Comi⁷, Anthony Feinstein⁸, Raj Kapoor⁹, Karen Lee¹⁰, Marco Salvetti¹¹, Kersten Sharrock¹², Ahmed Toosy², Paola Zaratin¹³ and Kim Zuidwijk¹⁴

Un mondo Ilbero dalla SM

Multiple Sciences Journal Q(0) 1–7 © The Author(s) 2012 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/1352458512458169 msj.sagepub.com **(SSAGE**)

MSJ

MULTIPLE Sclerosis

JOURNAL

CINS international federation

Priority areas :

- Underlying Mechaniasm/Experimental Models
- Target pathways and drug repurposing
- Proof of concept trials (phase II)
- Phase III clinical trials & outcome measures
- Symptom management and rehabilitation

INTERNATIONAL PROGRESSIVE MS ALLIANCE

CONNECT TO END PROGRESSIVE MS

en bedre hverdag VIVW FILTIO

Nationale Belgische Multiple Sclerose Liga vzw Ligue Nationale Belge de la Sclérose en Plaques asbi

Patient Perspective on Valuable functions

• Gait function, visual function and thinking/memory perceived are the most valuable functions in pwMS with >15 yrs of MS

1. Browne P, Chandraratna D, Angood C et al. Atlas of Multiple Sclerosis 2013: A growing global problem with widespread inequity. *Neurology* 2014;83:1022-24

2. Mackenzie IS, Morant SV, Bloomfield GA et al. Incidence and prevalence of multiple sclerosis in the UK 1990-2010: a descriptive study in the General Practice Research Database. *J Neurol Neurosurg Psychiatry* 2014;85:76-84

3. National Institute for Health and Care Excellence. CG186. Multiple Sclerosis: Management of multiple sclerosis in primary and secondary care. NICE. London. 2014

4. Miller DH, Chard DT, Ciccarelli O. Clinically isolated syndromes. Lancet Neurol 2012;11:157-69

5. Compston A, Coles A. Multiple sclerosis. Lancet 2008;372:1502-17

6. Tintore M, Rovira A, Rio J et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. *Brain* 2015;138:1863-74

7. Scalfari A, Neuhaus A, Daumer M et al. Age and disability accumulation in multiple sclerosis. Neurology 2011;77:1246-52

8. Lublin FD, Reingold SC, Cohen JA et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology 2014;83:278-86

9. Lucas RM, Hughes AM, Lay ML et al. Epstein-Barr virus and multiple sclerosis. J Neurol Neurosurg Psychiatry 2011;82:1142-48

10. Simpson S Jr, Blizzard L, Otahal P et al. Latitude is significantly associated with the prevalence of multiple sclerosis: a meta-analysis. *J Neurol Neurosurg Psychiatry* 2011;82:1132-41

11. Hernan MA, Olek MJ, Ascherio A. Cigarette smoking and incidence of multiple sclerosis. Am J Epidemiol 2001;154:69-74

12. Munger KL, Chitnis T, Ascherio A. Body size and risk of MS in two cohorts of US women. Neurology 2009;73:1543-50

13. Scolding N, Barnes D, Cader S et al. Association of British Neurologists: revised (2015) guidelines for prescribing disease-modifying treatments in multiple sclerosis. *Pract Neurol* 2015;15:273-79

14. Toosy AT, Mason DF, Miller DH. Optic neuritis. *Lancet Neurol* 2014;13:83-99

15. Rovaris M, Confavreux C, Furlan R et al. Secondary progressive multiple sclerosis: current knowledge and future challenges. *Lancet Neurol* 2006;5:343-54

16. Miller DH, Leary SM. Primary-progressive multiple sclerosis. Lancet Neurol 2007;6:903-912

17. Polman CH, Reingold SC, Banwell B et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. *Ann Neurol* 2011;69:292-302

18. Kuhle J, Disanto G, Dobson R et al. Conversion from clinically isolated syndrome to multiple sclerosis: A large multicentre study. *Mult Scler* 2015;21:1013-24

19. McDonald WI, Compston A, Edan G et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. *Ann Neurol* 2001;50:121-27

20. Polman CH, Reingold SC, Edan G et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the "McDonald Criteria". *Ann Neurol* 2005;58:840-46

21. Miller DH, Weinshenker BG, Filippi M et al. Differential diagnosis of suspected multiple sclerosis: a consensus approach. *Mult Scler* 2008;14:1157-1174

22. Marrie RA, Cohen J, Stuve O et al. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis : overview. *Mult Scler* 2015;21:263-81

23. Scalfari A, Knappertz V, Cutter G et al. Mortality in patients with multiple sclerosis. *Neurology*2013;81:184-92

24. Kleinewietfeld M, Manzel A, Titze J et al. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. *Nature* 2013;496:518-22

25. Thompson AJ, Toosy AT, Ciccarelli O. Pharmacological management of symptoms in multiple sclerosis: current approaches and future directions. *Lancet Neurol* 2010;9:1182-99

26. NHS England. Clinical Commissioning Policy: Disease Modifying Therapies for Patients with Multiple Sclerosis. 2014

27. Gold R, Kappos L, Arnold DL et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. *N Engl J Med* 2012;367:1098-1107

28. Fox RJ, Miller DH, Phillips JT et al. Placebo-controlled phase 3 study of oral BG-12 or glatiramer in multiple sclerosis. *N Engl J Med* 2012;367:1087-97

29. O'Connor P, Wolinsky JS, Confavreux C et al. Randomized trial of oral teriflunomide for relapsing multiple sclerosis. *N Engl J Med* 2011;365:1293-1303

30. Confavreux C, O'Connor P, Comi G et al. Oral teriflunomide for patients with relapsing multiple sclerosis (TOWER): a randomised, double-blind, placebocontrolled, phase 3 trial. *Lancet Neurol* 2014;13:247-56

31. Tintore M. Rationale for early intervention with immunomodulatory treatments. *J Neurol* 2008;255 Suppl 1:37-43

32. Miller AE, Wolinsky JS, Kappos L et al. Oral teriflunomide for patients with a first clinical episode suggestive of multiple sclerosis (TOPIC): a randomised, double-blind, placebo-controlled, phase 3 trial. *Lancet Neurol* 2014;13:977-86

33. Polman CH, O'Connor PW, Havrdova E et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. *N Engl J Med* 2006;354:899-910

34. Miller DH, Khan OA, Sheremata WA et al. A controlled trial of natalizumab for relapsing multiple sclerosis. *N Engl J Med*2003;348:15-23

35. Kappos L, Radue EW, O'Connor P et al. A placebo controlled trial of oral fingolimod in relapsing multiple sclerosis. *N Engl J Med* 2010;362:387-401

36. Cohen JA, Barkhof F, Comi G et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. *N Engl J Med* 2010;362:402-15

37. Cohen JA, Coles AJ, Arnold DL et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: a randomised controlled phase 3 trial. *Lancet* 2012;380:1819-28

38. Coles AJ, Fox E, Vladic A et al. Alemtuzumab versus interferon beta-1a in early relapsing-remitting multiple sclerosis: post-hoc and subset analyses of clinical efficacy outcomes. *Lancet Neurol* 2011;10:338-48

39. Coles AJ, Twyman CL, Arnold DL et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease modifying therapy: a randomised controlled phase 3 trial. *Lancet* 2012;380:1829-39

40. Tur C, Montalban X. Natalizumab: risk stratification of individual patients with multiple sclerosis. CNS Drugs 2014;28:641-48

41. Amato MP, Portaccio E. Fertility, pregnancy and childbirth in patients with multiple sclerosis: impact of disease-modifying drugs. *CNS Drugs* 2015;29:207-20

42. Lucio AC, D'Ancona CA, Lopes MH et al. The effect of pelvic floor muscle training alone or in combination with electrostimulation in the treatment of sexual dysfunction in women with multiple sclerosis. *Mult Scler* 2014;20:1761-68

43. Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. *Lancet Neurol* 2015;14:183-193.

44. Feinstein A, Freeman J, Lo AC. Treatment of progressive multiple sclerosis: what works, what does not, and what is needed. *Lancet Neurol* 2015;14:194-207.

45. Ontaneda D, Fox RF, Chataway J. Clinical trials in progressive multiple sclerosis: lessons learned and future perspectives. *Lancet Neurol* 2015; 14: 208-223.

46. Thompson AJ. Comment: A much-needed focus on progression in multiple sclerosis. Lancet Neurol 2015; 14: 133-135