

New Developments in the Symptomatic Management of ALS/MND

Professor Pam Shaw
Sheffield Institute for Translational Neuroscience (SITraN)
University of Sheffield, UK

TC-29 TEACHING COURSE

Motor Neuron Disease: An update on diagnosis, management and pathophysiology.

XXII World Congress of Neurology Santiago Chile 2015

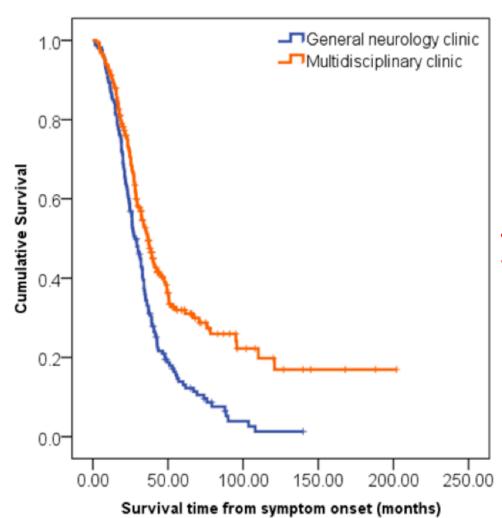
Pamela Shaw - Disclosures

Professor Shaw receives support from the following companies for honoraria/expenses; consultancy and advisory board work and/or research funding:

Biogen
Orion
Reneuron

Learning Objectives

- 1. To understand the value of good symptomatic care for quality of life and life expectancy in ALS/MND.
- 2. To gain awareness of recent research providing an evidence base for best practice symptomatic management.
- 3. To learn about new developments in the management of respiratory and nutritional complications of ALS/MND
- 4. To learn how bioengineering research can produce new devices to support specific aspects of neuromuscular weakness.
- 5. To gain awareness of prospects for the development of new neuroprotective therapies for ALS/MND.


Motor Neuron Disease

- · Commonest neurodegeneration of midlife
- Lifetime risk 1:400
- ~ 5% of cases in North of England have a family history
- 70% die within 1000 days of first symptom
- Most people have symptoms for 12 months before diagnosis

Outline

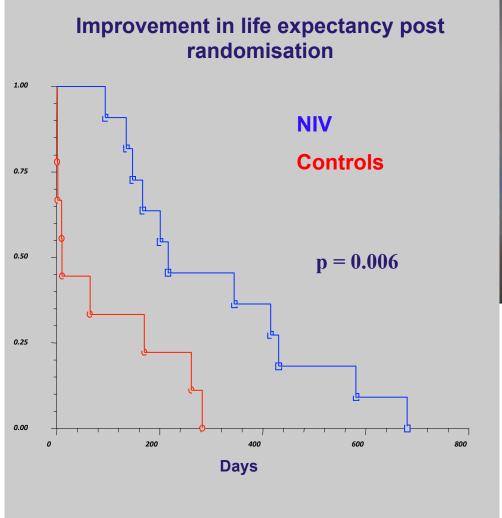
- Multidisciplinary (MDT) care
- Management of neuromuscular respiratory failure
- Nutrition
- Specific devices to support weakened muscles
- Prospects for improved neuroprotection in ALS/MND

Symptomatic care from a multidisciplinary team (MDT) improves survival

Survival of all MND patients from symptom onset who attended a general neurology clinic or the multidisciplinary clinic (months).

Independent of PEG, NIV, Riluzole

- -Aridegbe, McDermott, Shaw 2012 Sheffield, UK
- -Van den Berg 2005 Utrecht, The Netherlands
- -Chio 2006 Turin, Italy
- -Traynor, Hardiman 2003 Dublin, Ireland

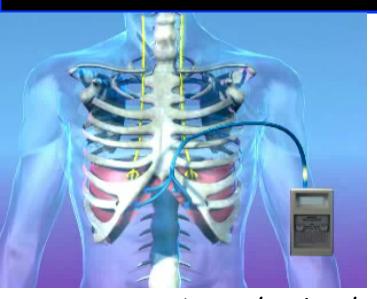

Outline

- Multidisciplinary (MDT) care
- Management of neuromuscular respiratory failure
- Nutrition
- Specific devices to support weakened muscles
- Prospects for improved neuroprotection in ALS/MND

Weakness of the Respiratory Muscles in MND

- Like any other skeletal muscle, respiratory muscles are also affected in motor neuron disease (MND)
- The major consequences of respiratory muscle weakness include:
 - Respiratory failure
 - Inability to cough effectively
- Respiratory insufficiency is the major cause of morbidity and mortality in MND
- Supporting respiratory function and preventing chest infections may prolong survival and improve quality of life

Randomised trial of non-invasive ventilation in MND



NICE GUIDELINE 2010

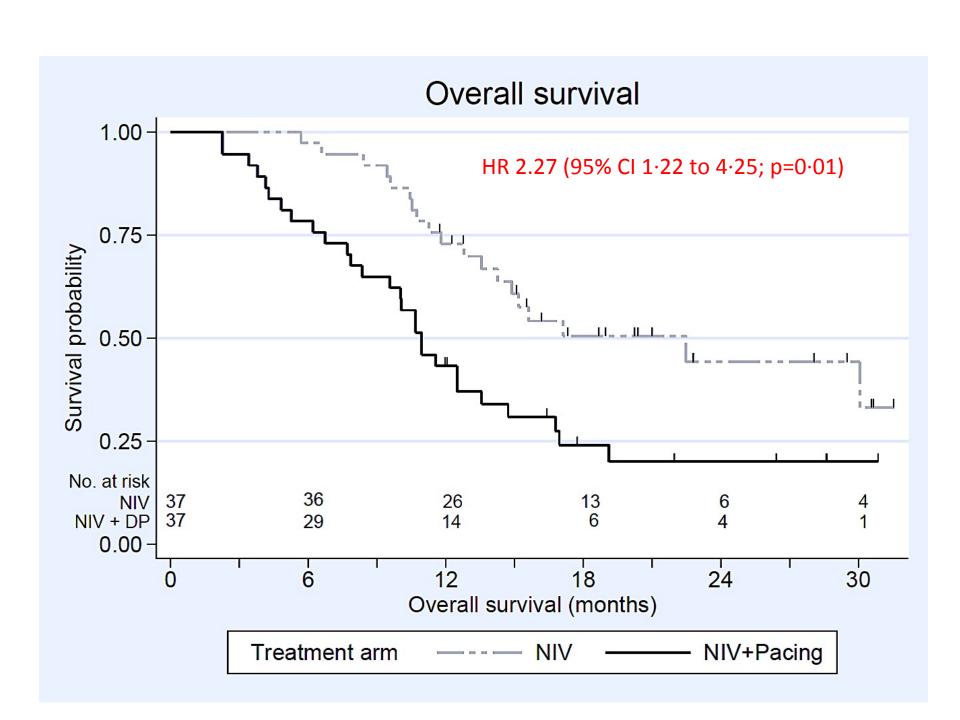
NIV is not problem free

- Compliance not 100%
 - Multifactorial
- Intrusive
- Cumbersome

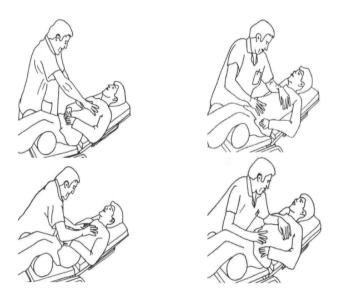
Therefore an alternative would be attractive



A randomised controlled trial evaluating NeuRx/4


Diaphragm Pacing in patients with respiratory muscle
weakness due to Motor Neuron Disease or Amyotrophic

Lateral Sclerosis



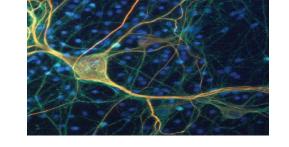
CT Du Chair Ma Daniel

CI Dr Chris McDermott

Manually assisted cough via chest compressions and abdominal-thoracic compressions

Mechanical in-exsufflator
Cost £4000

Non-invasive aids for the management of weak respiratory muscles



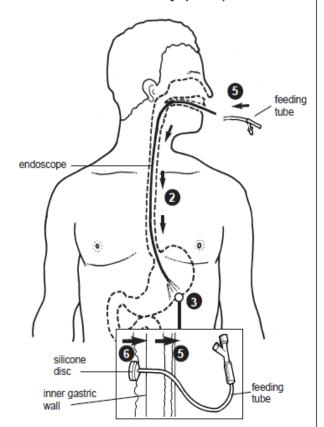
BiPAP Ventilator

Manual insufflator
Cost £16

Effects of cough augmentation on morbidity, quality of life and survival in patients with motor neuron disease using non-invasive ventilation:

A randomized clinical trial

ISRCTN 43911973


Future work

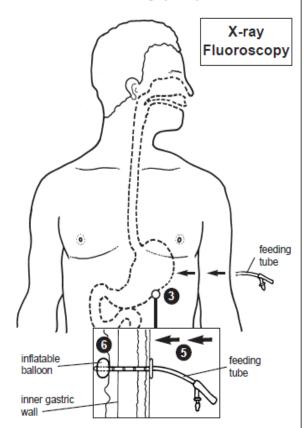
- A larger multi-centre study is required to explore the potential benefits of intervention with cough assist devices in order to make firm recommendations.
- The data generated and the lessons learned in this study will be valuable for power calculation and informing the inclusion criteria in the planning of a larger study
 - More stringent inclusion criteria based on effective use of NIV over ~ 4 weeks
 - Inclusion of peak cough flow in the minimisation criteria
- A larger study based on survival and QOL may be achievable with ~ 100 patients if M-IE assumed to convey a moderate/large effect size

Outline

- Multidisciplinary (MDT) care
- · Management of neuromuscular respiratory failure
- Nutrition
- Specific devices to support weakened muscles
- Prospects for improved neuroprotection in ALS/MND

Percutaneous Endoscopic Gastrostomy (PEG)

- 1. Conscious sedation (not shown in picture)
- Endoscope insertion and stomach inflation
- 3. Transillumination with endoscope to locate puncture site
- Incision, guide wire insertion (not shown in picture) through puncture site into stomach, up the oesophagus, exiting mouth
- Feeding tube passed over the guide wire through the mouth, oesophagus, into stomach and pulled through the abdominal wall incision
- Secure fixation with robust silicone disc
- Endoscopic check

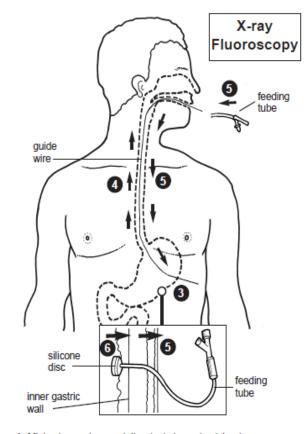

Advantages: Large bore tube placement, secure fixation,

stiches not needed

Disadvantages: Endoscope use, conscious sedation, NIV

use not possible during the procedure

Radiologically Inserted Gastrostomy (RIG)


- Conscious sedation not necessary (not shown in picture)
- Stomach inflation with NGT (not shown in picture)
- Location of puncture site under fluoroscopic guidance
- Stomach stitched to the abdominal wall (gastropexy), guide wire pushed into stomach from outside, track enlargement through a series of dilators (not shown in picture)
- Feeding tube pushed into stomach from outside through enlarged track
- Feeding tube fixation with inflatable balloon
- Fluoroscopic check with contrast medium injection

Advantages: No endoscope use, NIV use possible,

conscious sedation not required

Disadvantages: Small bore tube placement, stitches needed

Per-oral Image-guided Gastrostomy (PIG)

- Minimal conscious sedation (not shown in picture)
- Stomach inflation with NGT (not shown in picture)
- Location of puncture site under fluoroscopic guidance
- Guide wire insertion through puncture site into the stomach, up the oesophagus, exiting mouth
- Feeding tube passed over the guide wire through the mouth, oesophagus, into stomach and pulled through the abdominal wall incision
- Secure fixation with robust silicone disc
- Fluoroscopic check with contrast medium injection

Advantages: Minimal sedation, no endoscope use, NIV use

possible, large bore tubes, secure fixation,

stitches not needed

Disadvantages: More complex procedure

Gastrostomy benefits (?)

Alternative nutritional intake route

Unanswered Questions

- Improved survival (?)
- Improved nutritional outcome (?)
- Improved quality of life (?)
- Most appropriate method (?)
- Optimal timing (?)

A prospective multi-centre evaluation of gastrostomy in patients with MND

PROGAS

Prof. Pam Shaw

Dr Chris McDermott Dr Haris Stavroulakis

Conclusions

- Peri-procedural safety similar for PEG, RIG and PIG
- No significant differences in 30-day mortality rates
- 30-day mortality independent of insertion method but significantly higher for patients with more than 10% weight loss
- Differences in post-gastrostomy survival driven by MND progression
- Survival independent of gastrostomy method but significantly influenced by FVC, BMI and weight loss %
- PEG associated with higher peri-procedural complications but easier tube management
- RIG associated with higher post-procedural complications and more complex tube management
- PIG appears to be safe for frail patients with respiratory compromise

Recommendations

- Early gastrostomy placement before respiratory and clinical deterioration
- Timing and method selection based on individual needs
- Gastrostomy survival prediction tool is being generated based on FVC, BMI and % weight loss
- % Weight loss may provide the best guide for the timing of gastrostomy placement

Outline

- Multidisciplinary (MDT) care
- Management of neuromuscular respiratory failure
- Nutrition
- Specific devices to support weakened muscles
- Prospects for improved neuroprotection in ALS/MND

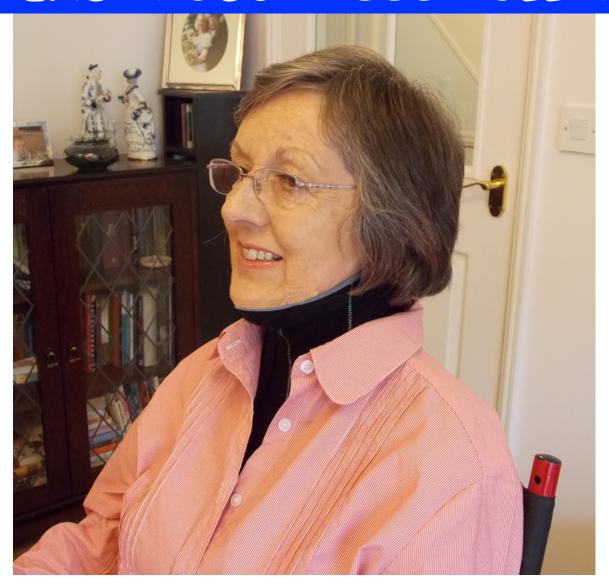
Tackling Neck Muscle weakness

Head weighs ~ 5kg

 Existing support devices either immobilise the neck or provide insufficient support

National Institute for Health Research

CI Dr Chris McDermott



END PRODUCT SSS COLLAR

S Baxter ——— PJ Shaw, CJ McDermott J Rehab Res & Dev 2015

H Reed ——— PJ Shaw, CJ McDermott J Med Engin & Technol 2015

Outline

- Multidisciplinary (MDT) care
- Management of neuromuscular respiratory failure
- Nutrition
- Specific devices to support weakened muscles
- Prospects for improved neuroprotection in ALS/MND

THE SEARCH FOR NEUROPROTECTION Recent Therapeutic Trials in MND

Anti-glutamate agents

- Riluzole *+
- Gabapentin +/-
- Lamotrigine
- Topiramate
- Ceftriaxone

Anti-oxidant therapy

- N-acetyl cysteine +/-
- Co-enzyme Q10

Anti- inflammatory/Inhibitors of astrocyte activation

- ONO 2506
- Celecoxib
- Copaxone

Neurotrophic factors

- CNTF
- IGF-1 +/-
- BDNF (SC and IT)
- GDNF

Antiapoptotic

- Talampanel
- Minocycline

Other

- Xaliproden/ SR 57746A
- Creatine
- Pentoxifylline
- Indinavir
- Lithium
- Olesoxime
- Dexpramipexole

TRIALS IN THE PIPELINE FOR ALS/MND

1. Two trials of muscle troponin activators:

```
Cytokinetics - tirasemptiv
Orion - levosimendan
```

- 2. Anti-oxidant edaravone -Phase 2/3 Treeway.
- 3. SOD1 knock-down anti-sense oligonucleotide Phase 1 Biogen. Similar approach for C9ORF72 patients in development.
- 4. MIROCALS Phase 2 trial of low dose interleukin 2 as an antiinflammatory agent.
- 5. Biogen Methodology Evaluation study to assess the best outcome measures to use in Phase 2 trials.

Conclusions

- 1. Good symptomatic care improves survival and quality of life for patients with MND.
- 2. MDT care has an additional benefit above riluzole, NIV, PEG.
- New aspects of respiratory management are being explored to provide an evidence base including: diaphragm pacing; cough assist devices; end of life care in patients with NIV.
- 4. Evidence based guidelines for optimal nutritional care / gastrostomy placement will emerge in the near future.
- 5. Bioengineering collaboration and assistive technology may generate devices to provide improved support for aspects of neuromuscular weakness eg better designed collars for neck support.

Key References

- Respiratory muscle weakness versus sleep disordered breathing as predictors of quality of life in ALS. SC Bourke et al. Neurology 57:2040-2044;2001.
- Non-invasive ventilation in ALS: indications for treatment and effects on quality of life. SC Bourke et al. **Neurology** 61:171-177; 2003.
- Effects of non-invasive ventilation on survival and quality of life in patients with amyotrophic lateral sclerosis: a randomized controlled trial. SC Bourke, et al. **Lancet Neurology** 5:140-147;2006.
- Respiratory management of motor neurone disease: a review of new developments. MK Rafiq et al. **Practical Neurology** 12:166-176;2012.
- The natural history of motor neuron disease: assessing the impact of specialist care. T Aridegbe et al. **Amyotroph Lateral Scler Frontotemporal Degen** 2012 (Epub May 29).
- A prospective multi-centre evaluation of gastrostomy in patients with motor neurone disease. ProGas Study Group. Lancet Neurology 2015;14:702-709.
- A preliminary randomized trial of the mechanical insufflator-exsufflator versus breath stacking technique in patients with amyotrophic lateral sclerosis. MK Rafiq et al. **Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration** 2015 (EPub July 3).
- Head-Up: an interdisciplinary, participatory and co-design process informing the development of a novel neck support for people living with progressive neck muscle weakness. H Reed et al. **Journal of Medical Engineering and Technology** 2014;39:404-410.
- Safety and efficacy of diaphragm pacing in patients with respiratory insufficiency due to amyotrophic lateral sclerosis (DiPALS): a multicentre, open-label, randomised controlled trial. DiPALS Study Group. **Lancet Neurology** 2015;14:883-892.
- The evidence for symptomatic treatments in amyotrophic lateral sclerosis. TM Jenkins et al. **Curr Opin Neurol** 2014;27:524-531.
- Clinical trials in amyotrophic lateral sclerosis: why so many negative trials and how can trials be improved? H Mitsumoto et al. Lancet Neurology 2014;13:1127-38.