

Orthostatic hypotension in dementia

Juan Idiaquez

Universidad de Valparaiso

Pontificia Universidad Católica de Chile

Disclosure

• The author declare no conflicts of interests

Learning Objectives

Clinical relevance of OH in dementia

Symptoms associated with OH

OH in different dementing process

- Strategies for OH management
- Key message: OH must be consider in the evaluation of patients with dementia

CNS autonomic dysfunction

Factors
Dehydration
Deconditioning
Heart disease
Endrocrine
B12 deficit
Aging

Medications
tricyclic antidepressant
antihypertensives
α 1 blockers
antiparkinsonians
antipsychotics

PNS autonomic dysfunction

TYPES OF ORTHOSTATIC HYPOTENSION

Freeman R. Clin Auton Res (2011)

AUTONOMIC ACTIVATION ON STANDING simplified scheme

STANDING

 $BP = \bigvee CO \times TPR$

NORMAL RESPONSE

BP = CO x TPR
$$\uparrow$$

(\uparrow HR x SV)

time

Orthostatic symptoms in Dementia

Classical symptoms

Blurred vision and dizziness on standing

Light headedness

Lower limbs weakness (on standing or walking)

Neck pain in sub occipital and Para cervical region

Syncope (postural, with Valsalva maneuver)

Unconventional symptoms

Cognitive fluctuations (slowing while standing)

Leg pain while standing, Lethargy, fatigue

Sleeping in chair, sleeping at meals

Associated manifestations

Falls, myocardial infarction, increased mortality

Orthostatic hypotension in dementia

Asymptomatic

30% of patients with OH

Chelimsky T

The American Journal of Medicine (2009)

63% of dementia patients with OH

Bengtsson-Lindberg M

Clin Auton Res (2015)

Symptomatic

Diurnal variability
Postprandial
Hot environment
Dehydration
Deconditioning
Comorbid condition
Drugs

Comparative studies of Orthostatic hypotension in dementias

Authors	n	mean age	DLB			•		on (%) Controls
Passant (1997)	151	76			39	52	46	
Allan (2007)	139	76.5	52	49	34	34		13
Sonnesyn(2009)	196	75.6	42	55	41	31.6		14
Mehrabian (2010)	267	76.5			15	22		4
Bengtsson-L (201	5)154	76	70		33			13

OH and DLB

- Pathology: α synuclein Lewy bodies and neurites
- Sites Medulla: ventrolateral, raphe nuclei
- Peripheral autonomic ganglia
- OH orthostatic symptoms and OH are frequent (Thaisettawatful Neurology 2004)
- OH associated with systolic and diastolic BP fall
- OH more severe than AD (Andersson M. Int J Geriatr Psychiatry 2008, Oka J Neurol Sci 2007)
- OH associated with shorter survival (Stubendorff K. PLoS One 2012)

Case DLB

- 79 years old, male . Since 4 years memory loss and visual hallucinations
- His son noticed that the patient has cognitive fluctuations
- Micturition symptoms: urgency and incontinency
- Severe post prandial symptoms
- Gastrointestinal: severe constipation
 BP (mmHg) supine = 156/80 standing = 100/76
- BP (mmHg) Post prandial: 69/39 (40 min.)
- Cardio vagal: abnormal

•

Case DBL

Post prandial hypotension

Substantia nigra (Lewy bodies H & E

Ubiquitine stain

OH and Parkinson's disease

- Pathology: α synuclein Lewy bodies and neurites
- Sites Medulla: rostral ventrolateral, raphe
- Spinal cord: intermediolateral cell column
- Peripheral autonomic ganglia
- Sympathetic nerve terminals (heart)
- OH 20-50% of PD in older patients at later stages
 OH no association with cognitive decline (Studendorff PLoS One 2012)
 - OH predictor of dementia (Anang J Neurology 2014)

OH and Alzheimer' disease

OH reported in 15-40% AD patients

Comorbidities (Stroke, Diabetes, drugs)

Findings:

OH is mainly due to systolic BP fall on standing

Absent of cardiac sympathetic denervation (Joong-Seok J Neurol Sci 2015)

OH is more frequent in mixed dementia (Alzheimer + Vascular) than Alzheimer patients (Bengtsson-Lindberg M Clin Auton Res 2015)

OH and Vascular dementia

- OH reported in about 20% and probably is multifactorial
- OH associated with large cerebral artery infarction (Xiong L J Neurol Sci 2013)
- OH is associated with comorbidities (Coronary artery disease Diabetes, drugs) (Phipps J Neurol Sci 2012)
 - Mixed dementia (Alzheimer + Vascular)

1

Chronic cerebral hypoperfusion contribute to dementia

OH

Transient cognitive deficit on standing

Cognitive impairment

OH and Cognitive impairment in Dementia

- 1. Neurodegeneration process affects cognitive areas and sites related with BP control
- 2. OH produce cerebral hypoperfusion (mainly in frontal lobes) increasing the underlying pathologic process
- 3. The effect of OH on cognitive function could be transient, during standing position, aggravating the mental status (fluctuations)
- (Sambati L. Neurol Sci. 2014)

OH Strategies for treatment

Non pharmacologic

Education: recognition of different symptoms

daily life activities, ambient temperature

postural maneuvers

discontinue aggravating drugs

support stockings, abdominal binding

Sleep: head elevated (15 to 30 cm)

(avoid effect of supine hypertension on brain vessels)

Volumen expansion: fluid daily =2- 2.5 L, Na = 8-10 g drink water rapidly (500 cc)

Diet: Avoid carbohydrates, frequent small meals avoid alcohol

Pharmacologic treatment

Fludrocortisone

Midodrine

Pyridostigmine

L-DOPS

Approach to evaluation and treatment of OH in dementia patients

- 1. Collect information from caregivers
- 2. Identify worsening factors
- 3. Exclude non-neurogenic diseases causing OH
 - 4. Evaluate the impact of OH in daily life activities
- 5. Is it relevant to measure orthostatic BP changes, including those patients without classical symptoms of OH
- 6. Treatment of OH may help to avoid falls and possibly to improve cognitive fluctuations

REFERENCES

- Allan LM. J Neurol Neurosurg Psychiatry 2007;78:671-7
- Anang JB. Neurology 2014;83:1253-60
- Benarroch E. Autonomic Neurology Oxford University Press 2014
- Freeman R. Clin Auton Res 2011;21:69-72.
- Idiaquez J. J Neurol Sci 2011;305:22-7
- Chelimsky T. Am J Med 2009; 122:574-80
- Bengtsson-Lindberg M Clin Auton Res 2015; 25:87-94
- Passant U. Int J Geriatr Psychiatry 1997; 12:395-403
- Sonnesyn H. Dement Geriatr Cogn Disord 2009; 28:307-13
- Mehrabian S. J Neurol Sci 2010;299:45-8
- Thaisettawatful P. Neurology 2004;62:1804-9
- Andersson M. Int J Geriatr Psychiatry 2008; 23:192-8.
- Oka J. Neurol Sci 2007;254:72-7
- Phipps J. Neurol Sci 2012;314:62-5
- Sambati L. Neurol Sci. 2014;35:951-7
- Xiong L. J Neurol Sci 2014;337:141-6
- Joong-Seok K. J Neurol Sci 2015
- Stubendorff K. PLoS One 2012 7(10): e 45451