Neurodegenerative lesions in young and very old people

Juan C. Troncoso, M.D
Johns Hopkins University School of Medicine
Department of Pathology
troncoso@jhmi.edu

World Congress of Neurology
Santiago, Chile
1 November 2015

Juan C. Troncoso, M.D Johns Hopkins University School of Medicine

Support:

- Johns Hopkins University Alzheimer's Disease research Center (NIH AG
 - BrightFocus Foundation

Other Disclosures: None

LEARNING OBJECTIVES

- Degenerative lesions of the brain start early in life (>30 years)
- Tau lesions are frequent in the locus coeruleus, entorhinal cortex, and hippocampus in young subjects
- Aβ amyloid lesions appear as early as 40 years of age
- Onset of Aβ lesions is related to ApoE genotype
- Tau lesions are independent of ApoE genotype
- Primary age-related tauopathy (PART) is common in older subjects (>85 years) who do not have Alzheimer's disease

KEY MESSAGE

 FUNCTIONAL DECLINE AND NEURODEGENERATION OF THE BRAIN STARTS EARLY IN LIFE

EVEN IF YOU ESCAPE:
 ALZHEIMER'S, PARKINSON'S, LEWY BODY DISEASE,
 AND FRONTO-TEMPORAL DEMENTIA,
 THE BRAIN WILL STILL BE ABNORMAL IN OLD AGE.

AGING AND AGE-RELATED DISEASES

Source of Autopsy Brains

ADRC n = 349

BLSA (> 85 years) n= 182

PDRC n = 274

OCME & LIEBER
INSTITUTE
(20-50 YEARS)

n = 295

Methods: Tau & Abeta immunostains

Subjects 20 to 50 years of age

Ages (years)	Total	Males	Females	White	AA	Other
20-29	33	25	8	22	8	3
30-39	59	36	23	41	14	3
40-50	96	61	35	67	28	1
	188	122	66	130	50	7

Aß Study (large tissue blocks)

- Diffuse Aβ deposits in cerebral cortex
- Scant vascular Aβ
- No neuritic plaques
- No astrocytic proliferation
- No microglial reaction

Aß deposits (6E10 ICC)

Study	Age &	Race		Αβ							
#	Sex										
			Hippo	Trans- ERC	ERC	ITG	Fr	SMTG	IP	OCC	Vas
65	49 M	W	+	+	+	+++	+++	+++	+++	+++	+
7	46 F	W	+	+	+	++	+++	+++	+++	+++	
2	47 F	AA		+	+	+	+	+	+	+	++
78	47 M	W				+	+	+	+	+	
165	40 M	W				++	+	+	+	+	
217	48 F	W		+	+	+++	++	++	++	+/-	+
252	44 M	AA	+	+	+	+++	++	+++	+++	+	
136	44 M	AA		+++	++	+++	++	+++	++	++	
280	43 M	W	+	n/a	++	n/a	++	+++	+++	+	+
206	45 F	W		+++	++	n/a	++	+	+	+	+
215	45 F	W		++		++	+	+++	+	++	
272	47 M	W				+	+		+	+	
72	43 M	W	n/a	n/a	n/a	n/a	++	+++	++		

ApoE Alleles (40-50 year old)

Race / ApoE Allele	E2	E3	E4
White n = 67	13 (6.8%)	93 (48.4%)	28 (14.6%)
AA n = 28	7 (3.6%)	38 (19.8%)	11 (5.7%)
Other n = 1	0	2 (1%)	0
All n = 96	20 (10.4%)	133 (69.3%)	39 (20.3%)

Aβ deposition and ApoE genotypes

Study	Age	Race		Αβ							ApoE	
#	&											
	Sex											
			Hippo	Trans-ERC	ERC	ITG	Fr	SMTG	IP	осс	Vas	
65	49 M	W	+	+	+	+++	+++	+++	+++	+++	+	E4/E4
7	46 F	W	+	+	+	++	+++	+++	+++	+++		E4/E3
2	47 F	AA		+	+	+	+	+	+	+	++	E4/E4
78	47 M	W				+	+	+	+	+		E4/E3
165	40 M	W				++	+	+	+	+		E4/E3
217	48 F	W		+	+	+++	++	++	++	+/-	+	E4/E3
252	44 M	AA	+	+	+	+++	++	+++	+++	+		E4/E3
136	44 M	AA		+++	++	+++	++	+++	++	++		E3/E4
280	43 M	W	+	n/a	++	n/a	++	+++	+++	+	+	E4/E4
206	45 F	W		+++	+++	n/a	++	+	+	+	+	E3/E4
215	45 F	W		++		++	+	+++	+	++		E3/E4
272	47 M	W				+	+		+	+		E3/E4
73	43 M	W	n/a	n/a	n/a	n/a	++	+++	++			E3/E4

ApoE Genotypes (40-50 year old)

АроЕ	n	Aβ (+) n,	%	Aβ (-) n, %
Genotype				
2/2	2	0	2	
2/3	13	0	13	
2/4	3	0	3	
3/3	46	0	46	
3/4	28	10 30	5% 18	64%
4/4	4	4 100	0%	0 %
Total	96	13 13.	5% 83	86.4%

Tau Lesions in Locus Coeruleus n = 55

Age	#	Tau (+)		
20-29	9	55.5 %		
30-39	17	58.8 %		
40-50	29	100 %		

Tau Lesions in Hippocampus & ERC n = 135

Age	n	Tau (+)	%
20 - 29	23	2	8.7 %
30 - 39	41	10	24.3 %
40 - 50	71	40	56.3 %

TAU LESIONS IN HIPPO/ERC & LC

Conclusions I

- Aβ lesions, a hallmark of Alzheimer's, begin in the 5th decade of life, many years before onset of cognitive decline
- Aβ deposition in neocortex precedes Tau lesions
- Tau lesions of brain stem and ERC/hippocampus begin very early in life and appear independent of disease
- Tau lesions appear independent of ApoE genotype
- Tau lesions do not necessarily overlap with Aβ lesions
- Disease-independent tau lesions may be proxies for neuronal changes underlying age-associated cognitive decline

AGING AND AGE-RELATED DISEASES

AGING AND AGE-RELATED DISEASES

PART Primary age-related tauopathy

A 101 year-old with Dementia

- 101 y/o woman
- 10 year of dementia
- Clinical Dx. AD
- Old occipital infarcts
- Tau / NFT Braak III
- No Neuritic plaques or Aβ deposits
- No Lewy bodies

Microscopic findings

Hirano – Entorhinal

Tangles and Ghost Tangles Hippocampus

Hirano – Hippocampus

Tau – Hippocampus

BLSA autopsies of subjects 2 85 years of age (n = 182)

	PART No Alzheimer's or degenerative pathology c/s vascular	Alzheimer's pathology c/s vascular	Other pathologies
Number of subjects	37 (20%)	87 (48%)	58 (32%)
Age (SD) years	92 (4.4)	93 (4.6)	
CDR (0-3) mean	0.77	1.29	
MMSE (30-0) mean	23.7	21.19	

stage I stage II stage III stage IV Braak stage distribution Heschl's gyrus hippocampus hippocampus transentorhinal region occipitotemporal gyrus temporal neocortex rhinal region rhinal sulcus 4 **Braak distribution** *P<0.0001 PART AD # Cases PART ΑD Braak 0 Braak 1 Braak 2 Braak 3 Braak 4 Braak 5 Braak 6 Braak 0 Braak 1 Braak 2 Braak 3 Braak 4 Braak 5 Braak 6

Cognitive testing (CDR) Distribution in BLSA

Cognition, Memory & Age

Conclusions II

FUNCTIONAL DECLINE AND NEURODEGENERATION OF THE BRAIN STARTS EARLY IN LIFE

EVEN IF YOU ESCAPE:

ALZHEIMER'S, PARKINSON'S, LEWY BODY DISEASE, FRONTO-TEMPORAL DEMENTIA, THE BRAIN WILL STILL BE ABNORMAL IN OLD AGE

Primary age-related tauopathy (PART) is common in older subjects (>85 years) who do not have Alzheimer's disease

REFERENCES

- Braak, H. et al. 2011. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. J Neuropathol Exp Neurol. 70:960-969.
- Corder, E. H., et al. 1993. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science. 261:921-923.
- Driscoll, I., & Troncoso, J. 2011. Asymptomatic Alzheimer's disease: a prodrome or a state of resilience? Curr Alzheimer Res. 8:330-335.
- J F. Crary et al 2014. Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathologica. 128:755-766.
- Jellinger et al 2015. PART, a distinct tauopathy, different from classical sporadic Alzheimer disease. Acta Neuropathologica. 129(5):757-62.
- C. Duyckaerts et al 2015. PART is part of Alzheimer disease. Acta Neuropathologica. 129(5):749-56.
- Pletnikova et al 2015. Alzheimer Lesions in the Autopsied Brains of People 30 to 50 Years of Age. Cognitive and Behavioral Neurology. (3):144-152.