Parkinsons's Disease: New Perspectives

Professor Amos D Korczyn Sackler Faculty of Medicine Tel Aviv University

Danube course, WCN Vienna 25.09.2013 <u>What are the "unmet needs" for</u> neurodegenerative diseases?

Definition of the NDD, e.g. PD

- Understanding the pathogenesis
- Identifying a potential target for intervention

<u>Clinical definition of PD</u>

An adult-onset, progressive, predominantly motor disorder

 Combining 2 or more of the following: Bradykinesia Rest tremor Limb rigidity Postural instability

• Marked and sustained response to levodopa

Non-motor manifestations

- Seborrheic dermatitis
- Sensory complaints
- Premorbid personality
- Olfactory dysfunction
- **Constipation**
- **Depression**
- REM-sleep behavior disorder

Definition of parkinsonian syndromes – Lumping or splitting?

<u>Clinical subtypes</u> of Parkinson's disease

- Tremor predominant
- Akinetic-rigid type
- Postural Instability Gait Disorder
- Lower body parkinsonism

Genes associated with PD

Locus	Region	Gene	Age-at-onset	Inheritance
PARK1/4	4q21	SNCA		AD
PARK2	6q26	PRKN	Early-onset	AR
PARK3	2p13	-		AD
PARK5	4p13	UCH-L1		AD
PARK6	1p36.12	PINK1	Early-onset	AR
PARK7	1p.36.23	DJ-1	Early-onset	AR
PARK8	12p12	LRRK2		AD
PARK9	1p.36.13	ATP13A2	Early-onset	AR
PARK10	1p32	_		-
PARK11	2q37.1			AD
PARK12	Xq21-q25	-		X-linked
PARK13	2p13.1	-		AD
PARK14	22q13.1	PLA2G6	Early-onset	AR
PARK15	22q12.3	FBXO7	Early-onset	AR
PARK16	1q32			-
PARK17	16q11.2	VPS35		AD
PARK18	3q27.1	EIF4G1		AD

Table 1 Reported familial PARK loci

PARK loci is the traditional nomenclature used to specify a chromosomal region that was linked with a specific parkinsonism phenotype. This system, however, is becoming outdated as classical linkage studies will most likely be replaced with next-generation sequencing technologies, and to date genome-wide association regions have not been designated as PARK loci. Those genes highlighted in bold are those confirmed to be a cause of PD and early-onset parkinsonism

AD autosomal dominant; AR autosomal recessive

Several genetic mutations account for some PD cases However, most cases are sporadic

Environmental factors associated with PD

Presumed PD-associated factors

Causative

- Age
- Male gender
- Toxin exposure
- Head trauma

Protective

- Uric acid
- Smoking
- Caffeine
- NSAID

This means that there is phenotypic convergence, where the same clinical manifestations result from different etiologies

11

PD, a multifactorial disease

- A complex progressive neurodegenerative disorder characterized by brain atrophy and deposits of synuclein
- Caused by a heterogeneous combination of environmental and genetic factors

PD – one disease or many?

Clinical, pathological and genetic heterogeneity

Even the pathological definition is insufficient

J Neural Transm (1999) [Suppl] 56: 107–111 © Springer-Verlag 1999

Parkinson's disease: one disease entity or many?

A. D. Korczyn

Sieratzki Chair of Neurology, Sackler Faculty of Medicine, Tel-Aviv University, Israel

Summary. Although most neurologists accept that Parkinson's disease (PD) is a unique disorder, we still lack a valid biological tool and therefore depend primarily on clinical examination in diagnosis. The distinction between PD and other parkinsonian syndromes is discussed.

How can biomarkers help?

Focus on dopamine as a central moleculer involved in neurodegeneration

<u>Modern understanding of the</u> <u>pathophysiology of PD</u>

- Discovering the depigmentation of the SN
- Identification of dopamine as neurotransmitter
- Mapping dopaminergic pathways in the brain, particularly the nigrostriatal tract
- Realization of dopamine loss in PD
- Demonstration in animals that dopamine depletion produces parkinsonism (6-OH-DA, reserpine)
- Substitution therapy with dl-dopa, then levodopa, then levodopa + DDCI, then bromocryptine
- Identification of dopamine receptor subtypes
- Synthesis of selective D₂ agonists.

Yet, no biomarker emerged for PD which is related to dopamine

The first genetic mutation discovered in familial parkinsonism in the α -synuclein gene, established PD as being essentially a synucleinopathy

Synuclein as a biomarker?

Omics Sciences

- Genomic
- Transcriptomics
- **Proteomics**
- Metabolomics

J Neural Transm (1999) [Suppl] 56: 107–111 © Springer-Verlag 1999

Parkinson's disease: one disease entity or many?

A. D. Korczyn

Sieratzki Chair of Neurology, Sackler Faculty of Medicine, Tel-Aviv University, Israel

Summary. Although most neurologists accept that Parkinson's disease (PD) is a unique disorder, we still lack a valid biological tool and therefore depend primarily on clinical examination in diagnosis. The distinction between PD and other parkinsonian syndromes is discussed.

Is Parkinson's disease a disease?

What is a disease?

Is hepatic cirrohosis a disease?

Is hepatic cirrhosis a disease?

- Alcohol abuse
- Viral hepatitis
- Bilharziasis
- Primary biliary cirrhosis
- Autoimmune hepatitis
- Cardiac failure
- Wilson's disease

What is a disease?

Disease' is an abstract concept encompassing the underlying process, with a common etiology, pathogenesis, evolution and pathology

Genes, proteins, and molecular machines

Epigenomics

- The genetic programming that occurs predominantly as a consequence of DNA methylation
- The molecular underpinning of this regulation involves the methylation of cytosine and is maintained by a family of DNA methyltransferases
- Actively transcribed genes are usually in an unmethylated state, whereas genes that are silenced are heavily methylated

PD, a multifactorial disease

- A complex progressive neurodegenerative disorder characterized by brain atrophy and deposits of synuclein
- Caused by a heterogeneous combination of environmental and genetic factors
- Because of its complexity and etiological heterogeneity it is not a "disease" in the classical sense

MicroRNAs (miRNAs)

- Small, noncoding single stranded RNA molecules of about 20-25 nucleotides (nt) tat originate from a 70-100 nt hairpinprecursor (pre-miRNA)
- Regulate eukaryotic gene expression at the posttranscriptional level by binding to the 3' untranslated region (UTR) of their target mRNAs and leading to a decrease of the target protein by either degradation of the mRNA or translational repression.
- miRNAs are abundant in the brain where they have crucial roles in development and synaptic plasticity.
- Certain miRNAs are differentially expressed in the human brain and regulate the expression of genes implicated in specific neurodegenerative diseases

Genes associated with PD: A second look

The genes can be grouped according to presumed effects:

- Mitochondrial dysfunction
- Protein handling
- Neuro immuno-inflammation
- Lysosomal dysfunction

Cochrane Database Syst Rev., 2011

Coenzyme Q10 for Parkinson's disease

Liu J, Wang L, Zhan SY, Xia Y

Pharmacological Therapy in Parkinson's Disease: Focus on Neuroprotection

Zsigmond Tamas Kincses & Laszlo Vecsei

Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary

Keywords

REVIEW

Dopamine agonists; Genetics; Kynurenine; L-dopa; Mitochondrion; Parkinson's disease.

Correspondence

Professor László Vécsei, Director, Department of Neurology University of Szeged, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, Semmelweis u., 6.H-6725 Szeged, Hungary. Tel.: +36(62)545 351, 545 348; Fax: +36(62)545 597; E-mail: vecsei@nepsy.szote.u-szeged.hu Although the number of available therapeutic approaches in Parkinson's disease (PD) is steadily increasing the search for effective neuroprotective agent is continuing. Such research is directed at influencing the key steps in the pathomechanism: the mitochondrial dysfunction, the oxidative stress, the neuroinflammatory processes and the final common apoptotic pathway. Earlierdeveloped symptomatic therapies were implicated to be neuroprotective, and promising novel disease modifying approaches were brought into the focus of interest. The current review presents a survey of our current knowledge relating to the pathomechanism of PD and discusses the putative neuroprotective therapy.

Making a diagnosis of PD is like making a diagnosis of stroke

The next stage is to identify the etiology or pathogenesis

- PAF
- Mitral valve lesion
- CADASIL/Fabry etc
- Atherosclerosis

Take home message

- PD is a syndrome, not a disease
- The clinical syndrome is the result of phenotypic convergence
- PD is the result of a hetergeneous combination of several genetic and environmental factors
- Several metabolic abnormalities likely exist in PD patients
- Identification of these processes and the patients having them is the basis of
- ³⁹ developing future DMDs

A major complicating factor

Genetic – phenotypic discrepancies

Assumption

Sporadic PD follows the same pathologic roadmap as the monogenic familial disease