Ultrasound of Compressive Neuropathies

Carlo Martinoli, MD Radiologia – DISSAL Università di Genova, Italy carlo.martinoli@unige.it

Nerve Ultrasound – anatomy

Common Peroneal Nerve at the Knee

SHORT-AXIS PLANE

Nerves have a honeycomb-like appearance with multiple rounded hypoechoic areas in homogeneous hyperechoic background

Nerve Ultrasound – anatomy

Ultrasound – scanning technique

Systematic scanning on short-axis planes is essential to follow the nerves contiguously throughout the limbs

Nerve Instability

The Osborne retinaculum retains the ulnar nerve posterior to the medial epicondyle during elbow flexion

Cubital Tunnel Syndrome

ADVANTAGES OF DYNAMIC IMAGING

- triceps medial head compression (condylar groove)
- impingement by FCU tendinous bands (cubital tunnel)
- ulnar nerve instability

Palmaris Profundus

MUSCULUS CONCOMITANS NERVI MEDIANI

gives off a distal tendon which passes beneath the flexor retinaculum and after traversing the carpal tunnel, it fans out attaching into the deep surface of the distal retinaculum or the palmar aponeurosis

Entrapment Syndromes

Normal nerve

Compressed nerve

Quantitative Studies

Nerve swelling (CSA)

Which is the method to measure the CSA?

- Æ indirect by calipers
- A direct by manual tracing and automated calculation
- Use the ellipse formula (equipment software)
 - Æ high reproducibility between experienced and inexperienced observers
 Aleman et al. 08

Yelsildag et al. 04

Æ gender, weight, BMI, race

p >.05

Duncan et al. 99

Cross-sectional area: $\pi ab/4$

Quantitative Studies

- wrist-to-forearm comparison of median nerve CSA
 - Æ pronator quadratus
 - Æ CSA ?ç2mm² è 99% sensitivity, 100% specificity
 Klauser et al., 2008
- wrist-to-forearm ratio of median nerve CSA
 - Æ 12cm proximal in the forearm
 - Æ 1.4 è 100% sensitivity with no false positives
 Hobson-Webb et al. 2008
- left-to-right comparison

Thoirs et al. 2008

Scanning Technique - probe positioning

 Use carpal bones as landmarks to align the probe correctly

NEUROLOGY IN THE AGE OF GLOBALIZATION

stria, 21-26 September 2013

Vienna 21-26 September, 2013

Scanning Technique - CSA measurement

v Use true short-axis scans

Scanning Technique - CSA measurement

CSA measured from the inner border of echogenic epineurium surrounding the fascicles v outer epineurium excluded

Scanning Technique – where to start where to end

Compression may occur at a distal site, where the nerve passes below the distal edge of the retinaculum è INVERTED NOTCH SIGN

Scanning Technique – pitfalls

v Don't examine the carpal tunnel with too magnified settings

v The bony floor of the tunnel should be always included in the FOV

Ganglion Cyst

Scanning Technique – where to start where to end

Tenosynovitis of Flexor Tendons

Scanning Technique – flexor tenosynovitis

Tilt the probe to make tendons hyperechoic

- v to better distinguish the median nerve from adjacent tendons
- in normal states, flexor tendons are closely packed with absent/minimal hypoechoic rim

Dynamic scanning during finger (index, middle) flexion/extension

 to better distinguish tenosynovitis from muscle extensions onto the tunnel

Nerve Ultrasound

Three main US categories

- Large US-detectable nerves
 - direct nerve evaluation
 - conventional equipment needed
 - quantitative measurements

Small US-detectable nerves

- direct nerve evaluation
- high-end equipment required
- satellite vessels as landmarks

Non US-detectable nerves

(too small-size, too deep course, intervening bone)

Brachial Plexus Nerves Median Nerve Ulnar Nerve Radial Nerve

Sciatic Nerve Femoral Nerve Tibial Nerve Peroneal Nerve

Nerve Ultrasound

Three main US categories

- Large US-detectable nerves
 - direct nerve evaluation
 - conventional equipment needed
 - quantitative measurements

Small US-detectable nerves

- direct nerve evaluation
- high-end equipment required
- satellite vessels as landmarks
- Non US-detectable nerves (too small-size, too deep course, intervening bone)

Musculocutaneous Posterior Interosseous Distal Divisional Branches

Sural Interdigital Superficial Peroneal Lateral Femoral Cutaneous Deep Peroneal Saphenous Plantar

PI Neuropathy – zone #1

LEASH of HENRY

- arterial branches arising from the recurrent radial artery
- they cross over the PIN just proximal to the arcade of Frohse
- prominent vessels (hypertrophied leash ?)6 vessels) may cause PIN compression
 Husarik et al. Radiology 2009

PI Neuropathy – zone #3

ANATOMICAL CONSIDERATIONS

- after exiting the supinator, the PIN sends a recurrent branch for the EDC
- it then descends the forearm supplying the extensor muscles and ends at the wrist sending sensory fibers to the carpal ligaments and joints

PI Neuropathy – zone #3

Palmar Cutaneous Branch

Hypothenar muscles

originates from the radial side of the MN about 2-3 inches above the wrist crease

- courses parallel to the MN and then pierces the antebrachial fascia or the retinaculum
- crosses the base of the thenar eminence directly over the tubercle of the scaphoid

Clinical Findings

- numbness and dysesthesia over the thenar aspect of the proximal palm (burning pain Æ neuroma)
- common cause of persistent pain after carpal tunnel release

muscles

Palmar Cutaneous Branch

PCB_{MN} Compression Neuropathy

- focal hypoechoic swelling of the nerve as it pierces the antebrachial fascia-flexor retinaculum (PCB tunnel)
- thickened fascia

After Carpal Tunnel Release too radial-sided surgical access

Recurrent Motor Branch Neuropathy

Nerve Ultrasound

Three main US categories

- Large US-detectable nerves
 - direct nerve evaluation
 - conventional equipment needed
 - quantitative measurements
- Small US-detectable nerves
 - direct nerve evaluation
 - high-end equipment required
 - satellite vessels as landmarks
- Non US-detectable nerves

(too small size, too deep course, intervening bone)

Brachial Plexus Coras (costoclavicular space) Lumbosacral Plexus Sciatic & Femoral (intrapelvic)

> Superior & Inferior Gluteal Iliohypogastric, Ilioinguinal Genitofemoral Deep Peroneal (leg) Medial & Inferior Calcanear

Baxter Neuropathy

- cause of chronic heel pain (up to 20% of cases)
 - more common in females (footwear?)
 - hypertrophied AbdH (runners)

overlooked!

- hyperpronated foot (flatfoot), obesity
- microtrauma against a heel spur
- severe plantar fasciitis (FDB and adjacent soft-tissue edema) Baxter et al. 1989; Recht et al. 2007; Chundru et al. 2008

nerve

Selective involvement of the AbdV

Baxter Neuropathy

Conclusion

The ability of US to depict nerves makes it possible to study nerve abnormalities in a variety of entrapment neuropathies

Main advantages of US over MR imaging

- higher spatial resolution Æ abnormalities of small nerves
- time effectiveness, lower cost, availability
- easy technique of examination
- Iong nerve segments evaluated in a single study

