MAYO CLINIC MRI Biomarkers form Bench to Bedside and Back!

Kejal Kantarci M.D., M.S. Professor of Radiology Division of Neuroradiology

<u>Disclosure:</u> Data Monitoring Safety Board Member; Takeda Global Research & Development Center, Inc., Pfizer and Jannsen Alzheimer's Immunotherapy

Biomarker versus Surrogate Marker

- Biomarker: Laboratory measurement that reflects the activity of a disease process
- Surrogate marker: Laboratory measurement that is used in therapeutic trials as a substitute for a clinically meaningful endpoint.

Ideal Biomarker for Alzheimer's Disease

- Accurate: Sensitivity and specificity to the hallmarks of Alzheimer-related pathology
- Precise: Test-retest reproducibility
 longitudinal tracking of progression
- Surrogate marker in therapeutic trials targeting disease-specific pathology

Imaging Biomarkers of AD

- Structural MRI: *macrostructure*
- ? Amyloid imaging PET: amyloid load
- FDG-PET: glucose metabolism
- ¹H MRS: biochemistry
- DTI: *micro*structure
- ASL-MRI: perfusion
- fMRI: function

Imaging biomarkers associated with a specific aspect of Alzheimer's disease -related pathology Case-control studies with autopsy confirmation

?áAmyloid PET Imaging with 11C-PiB

Ikonomovic et. al. Brain 2008

Amyloid PET Imaging with 18F-Ligands

Florbetapir F 18 (18F-AV-45), 18F-flutemetamol (18F-GE067), florbetaben (18F-BAY94-9172), and 18F-FDDNP (Half life: 110 min)

Sensitivity = 93% Specificity = 100%

Clark et. al. JAMA 2011

Antemortem Amyloid Imaging with PET and Postmortem Pathologic Correlations in DLB

density Lewy body density Α 2.1 2.1 SP (scaled to cerebellar retention) ACG . (scaled to cerebellar retention) 1.9 ACG 1.9 Cortical PiB retention PCG **Cortical PiB retention** MFG MFG PCG PG PG 1.7 1.7 IP MTG 1.5 1.5 MTG STG STG 1.3 1.3 CC Ad Ad Cd 1.1 1.1 MH 0.9 0.9 0 2 6 8 4 0.12 0 0.02 0.04 0.06 0.08 0.1 Beta-amyloid density (area occupied) LB density (number/mm²) (r = 0.13; p = 0.66)(r = 0.899; p < 0.0001)

Kantarci et al. Neurobiology of Aging 2012b

Structural MRI: Neurofibrillary Tangle Pathology is Associated with Atrophy on Volumetric MRI in AD

Braak and Braak Acta Neuropathol 1991 Vemuri et al. Neuroimage 2008; Whitwell et al. Neurology 2008

Structural MRI: Hippocampal Volumes A Biomarker for structural integrity of hippocampal neurons

Baseline

Follow-up

Range of Normal – AD pathology: Hippocampal volumes on MRI correlate with the neurofibrillary tangle pathology and hippocampal neuronal density at autopsy

Jack et al. Neurology 2002; Bobinski et al. J of Neurol Exp Neuropathol 1997

Imaging biomarkers of Alzheimer's Disease

- Differential diagnosis
- Early diagnosis
- Tracking disease progression
- Treatment planning and assessment of efficacy

Differential diagnosis of AD and FTLD

Sensitivity: 89% Specificity: 83%

Overall classification accuracy in autopsy-confirmed cases: 97%

Rabinovici et. al. Neurology 2011

Structural MRI differences among autopsy confirmed AD and FTLD

N=37

N=27

Vemuri et al. *Alzheimer's and Dementia* 2009

Alzheimer's Disease (AD) and Dementia with Lewy Bodies (DLB)

- DLB is the second most common cause of neurodegenerative dementia after Alzheimer's disease (AD).
- Many patients with DLB have a varying degree of AD in addition to Lewy body pathology.
- Imaging markers that predict the contribution of AD and pathology to the dementia syndrome in DLB would have an important role:
 - Treatment decisions
 - Responsiveness to disease-specific treatments

Differential Diagnosis of Alzheimer's Disease and Dementia with Lewy Bodies using Multi-modality Imaging

Atrophy (MRI)

Hypometabolism (FDG PET) A? load (¹¹C PiB PET)

AD > DLB

DLB > AD

Kantarci et al. Neurobiology of Aging 2012a

Differential Diagnosis of Alzheimer's Disease and Dementia with Lewy Bodies using Multi-modality Imaging

Atrophy (MRI)

Hypometabolism (FDG PET) A?doad (¹¹C PiB PET)

MAYO CLINIC

Kantarci et al. Neurobiology of Aging 2012a

Multimodality Imaging Markers Distinguishing DLB and AD AUROC=0.98

MAYO CLINIC

ታ6

02012 MFMER | slide-17

Hippocampal Volumes and Pathologic Classification of DLB

Smaller hippocampal volumes were associated with a higher Braak NFT stage $(r_p = ?9.63; p<0.001)$

Kantarci et al. *Neurology* 2012

Hippocampal Volumes and protein deposits in AD and DLB (n=72)

Phospho- tau

MAYO CLINIC ?aAmyloid

?•Synuclein

percent burden= % area of (red) positivity out of the total stained annotated area

	Rho (95% CI)	Univariate P-value	Multivariate P-value
Phospho-tau burden	-0.34 (-0.53, -0.10)	0.005	0.05
?Amyloid burden	-0.31 (-0.51, -0.08)	0.009	0.13
? = Synuclein burden	-0.15 (-0.038, 0.09)	0.22	

Imaging biomarkers of Alzheimer's Disease

- Differential diagnosis
- Early diagnosis
- Tracking disease progression
- Treatment planning and assessment of efficacy

National Institute on Aging and the Alzheimer's Association Workgroup on Diagnostic Guidelines for Alzheimer's Disease

- Preclinical Stages of AD: Biomarker positivity-based staging for research purposes
- Mild Cognitive Impairment: Biomarkers support the likelihood that mild cognitive impairment syndrome is due to the pathophysiological processes of AD
- Alzheimer's Disease: Biomarkers support the likelihood that the pathophysiological processes of AD underlies dementia

Detecting preclinical AD pathology with ?pAmyloid PET: Preclinical AD in the community

	Ν	Age	% ?ÆAmyloid Positive
Aizenstein et al. 2008	43	74	21%
Morris et al. 2010	241	75	26%
Jagust et al. 2010	19	78	47%
Pike et al. 2011	177	72	33%
Kantarci et al. 2012	408	79	34%

Staging of Preclinical AD National Institute on Aging and the Alzheimer's Association Workgroup Criteria

Stage 1

Asymptomatic amyloidosis -High PET amyloid tracer retention -Low CSF $A\beta_{1-42}$

Stage 2

Amyloidosis + Neurodegeneration -Neuronal dysfunction on FDG-PET/fMRI -High CSF tau/p-tau -Cortical thinning/Hippocampal atrophy on sMRI

Stage 3

Amyloidosis + Neurodegeneration + Subtle Cognitive Decline -Evidence of subtle change from baseline level of cognition -Poor performance on more challenging cognitive tests -Does not yet meet criteria for MCI

MCI → AD dementia

MAYO CLINIC

Sperling et. al. Alzheimer's and Dementia 2011

Staging of Preclinical AD

ŢŢ

2012 MFMER | slide-24

Preclinical AD Staging

Petersen et. al. Lancet Neurology 2013; Vos et al Lancet Neurology 2013

©2012 MFMER | slide-25

Progression from Preclinical AD Stage to MCI within 15 months (n=296)

Knopman et. al. Neurology 2012

MCI due to AD in the Community

MAYO CLINIC

Petersen et al. Annals of Neurology 2013

Imaging biomarkers of Alzheimer's Disease

- Differential diagnosis
- Early diagnosis
- Tracking disease progression
- Treatment planning and assessment of efficacy

Tracking Disease progression with Structural MRI

McDonald et al. *Neurology* 2009

Tracking Disease progression with ? SAmyloid PET

PIB-

PIB+

Villain et al. *Brain* 2012

Tracking Disease progression with ?-Amyloid PET Brain ?-amyloid load approaches a plateau

15-year interval where the slope of the amyloid SUVR vs time curve is greatest and roughly linear represents a large therapeutic window for secondary preventive interventions.

Imaging biomarkers of Alzheimer's Disease

- Differential diagnosis
- Early diagnosis
- Tracking disease progression
- Treatment planning and assessment of efficacy

Imaging Biomarkers in Treatment and Prevention of AD

- To determine who has the target pathology
- To determine whether a treatment is modifying the target pathology.

Imaging and acetylcholinesterase inhibitor response in dementia with Lewy bodies

Jonathan Graff-Radford,¹ Bradley F. Boeve,¹ Otto Pedraza,² Tanis J. Ferman,² Scott Przybelski,³ Timothy G. Lesnick,³ Prashanthi Vemuri,⁴ Matthew L. Senjem,⁴ Glenn E. Smith,⁵ David S. Knopman,¹ Val Lowe,⁴ Clifford R. Jack Jr,⁴ Ronald C. Petersen¹ and Kejal Kantarci⁴

- 1 Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- 2 Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL 32224, USA
- 3 Department of Health Sciences Research, Division of Biostatistics, Mayo Clinic, Rochester, MN 55905, USA
- 4 Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
- 5 Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA

Correspondence to: Kejal Kantarci, MD, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA E-mail: kantarci.kejal@mayo.edu

- Treatment naïve patients with DLB with baseline MRI (n=54)
- Normative rates of change on the Mattis dementia Rating Scale (DRS) to determine reliable change

Graff-Radford J. et al. Brain 2012

Structural MRI and AChI Response in Treatment Naïve DLP

Reliable improvement > Reliable decline

Graff-Radford J. et al. *Brain* 2012

?*á***Amyloid PET imaging predictors of AChl response in DLB**

Graff-Radford J. et al. *Brain* 2012

Bapineuzumab Phase 2 Trial

Rinne et. al. Lancet Neurology 2010

Effects of A? Immunization (AN1792) on MRI Measures of Cerebral Volume in AD

- Immunization with synthetic A
- Trial not completed -menningoencephalitis and death
- Modest clinical improvement and clearance of A at autopsy

	N (Placebo/ antibody responder)	Placebo minus antibody responder
Whole Brain Volume	52 / 38	-1.01*
Ventricular Volume	56 / 45	0.61*

* Statistically significant atrophy greater in antibody responder group

Effects of A?Vmmunization (AN1792) on MRI Measures of Cerebral Volume in AD

- Amyloid removal ?
- Unrecognized cases of menningoencephalitis ?
- Fluid shifts into CSF spaces ?
- Mobilization of amyloid ?í increased CSF outflow resistance

Take Home Messages

- Imaging biomarkers of AD-related pathology are dynamic therefore stage of the disease is important when qualifying
- Standardization for clinical use is incomplete for many imaging biomarkers
- To qualify as a surrogate marker for determining treatment effects:
 - Biomarker effects and clinical effects should have related pathophysiologic mechanisms
 - Potentially leading to parallel clinical and biomarker outcomes

