Difficult decision making in the management of ICH

Stefan Schwab

Department of Neurology

University of Erlangen-Nuremberg

Germany

ICH - Case

55 yo construction exec

- § Poorly controlled hypertension
- § Slumps over table at board meeting

Arrives at ED 30 min after onset

- § GCS 9
- § BP 225/110

What do you do?

- § Hematoma evacuation?
- § Lower BP to systolic < 140 mmHg?</p>
- § ICP monitor?
- § DNR? This is a bad disease and these folks never do well.

ICH - Management

No treatment (medical or surgical) proven beneficial in improving outcome (mortality or function) in randomized, controlled trial Is this still true?

Guidelines for ICH management

(US, Europe, Japan)

Primary and Secondary Brain Injury

- § 1°: tissue displacement, brain herniation, hydrocephalus
- § 2°: perihematoma injury; hematoma expansion; cellular toxicity of blood products

ICH - Prognosis

Mortality

- § ?á80-35% within 1 week
- § ?á60% within 1 year
- § ?á80% after 10 years
- § No difference between

1988 und 1998-2003

Functional Independence

?á0% after 6 months

Figure. Kaplan–Meier survival curves over 10 years (logarithmic scale) in patients with deep (light grey line), lobar (dark grey line), or posterior fossa (black line) ICH (*P*=0.0947; log rank test). Data referring to all hemorrhages (dotted line) are given as reference and include cases of probable ICHs.

Sacco 2009 Stroke Weimar 2003 Cerebrovasc Dis Flaherty 2006 Neurology Fogelholm 2005 JNNP Broderick 1993 Stroke

Outcome Predictors – The ICH Score

Component		ICH Score Points	
	3-4	2	
GCS Score	5-12	1	
	13-15	0	
ICH Volume (cc)	<u>></u> 30	1	
	< 30	0	
Intraventricular	Yes	1	
Hemorrhage	No	0	
Infratentorial Origin	Yes	1	
	No	0	
Age (years)	<u>></u> 80	1	
	< 80	0	
Total ICH Score		0 - 6	

ICH – prognostic factors

not influencable:

Initial hematoma volume

age

GCS on admission

Location of ICH

influencable:

Basic management Hemorrhage growth / re-bleeding Edema formation Intraventricular clot Hydrocephalus

Broderick 1993 Stroke Davis 2006 Neurology Hemphill 2001 Stroke Tuhrim 1999 Crit Care Med Ozdemir 2008 Neurol Res Shapiro 1994 J Neurosurg Diringer 1998 Stroke Becker 2001 Neurology Zurasky 2005 Neurology Bhattathiri 2006 Acta Neurochir Steiner 2006 Neurosurgery

ICH – treatment targets

Basic management

- § Tracheostomy
- § Prophylaxis DVT
- § BP

ICH surgery

- § Hematoma evacuation
- § minimal invasive (MISTIE)

ICH growth

- § Hemostasis
- § OAT-ICH INR normalization

Edema formation

- § ICP-monitoring
- § Decompressive surgery
- § Hypothermia

Intraventricular hemorrhage and hydrocepahlus

- § Intraventricular fibrinolysis
- § Lumbar drains

ICH Volume

<u>A x B x C</u> 2

Select CT slice with largest ICH A = longest axis (cm) B = longest axis perpendicular to A (cm) C = # of slices x slice thickness (cm)

Estimated volume of spheroid Correlates well w/ planimetric CT analysis

Clinical routine – "difficult questions"

- Basic management (RR, DVT, aso)...?
- **Prevention of hematoma growth..?**
- Surgical hemorrhage evacuation...?
- Management of brain edema...?
- External ventricular drainage...?
- Management of intraventricular hemorrhage..?
- Subgroup OAC-ICH...?
- Withdrawel of therapy..?

Clinical routine – "difficult questions"

- Basic management (RR, DVT, aso)...?
- **Prevention of hematoma growth..?**
- Surgical hemorrhage evacuation...?
- Management of brain edema...?
- External ventricular drainage...?
- Management of intraventricular hemorrhage..?
- Subgroup OAC-ICH...?
- Withdrawel of therapy..?

Treatment Target – Basic Management - *blood pressure* -

Prospective trials on blood pressure lowering in acute ICH

	INTERACT-2	INTERACT-1	ATACH-1
Ν	2794	403	60
Blood pressure threshold	BPS < 140 vs. < 180 mmHg	BPS < 140 vs. < 180 mmHg	BPS < 200, < 170, < 140 mmHg
Blood pressure difference at 1 hour after treatment	14 mmHg	13,3 mmHg	-
Primary endpoint	Death or disability at day 90	Proportional change of hematoma volume at 24 hours	Treatment feasibility and safety demonstrated
	p = 0,06	0,04	-
Secondary Endpoint	mRS: ordinal analysis at day 90	Hematoma growth at 24 hours	
	0,04	0,05	
	Mortality: no difference	Mortality: no difference	

*Systolic pressure at 1 hour: Intensive treatment group: 150 mmHg; Standard treatment group: 164 mmHg

** Systolic pressure at 1 hour: Intensive treatment group: 153 mmHg; Standard treatment group: 167 mmHg

BP in ICH - Expert Consensus

Guidelines for the Management of Spontaneous ICH

– AHA Stroke Council, 2010

Blood Pressure

§ If concern for elevated ICP

§ Maintain SBP < 180 mmHg and MAP < 130 mmHg and keep CPP 60-80 mmHg

- § If no concern for elevated ICP
 - § Target MAP < 110 mmHg or BP < 160/90
- § Lowering systolic BP acutely to < 140 mmHg is probably safe

Arbitrary expert opinion based on recognized paucity of data and less overall concern for perihematoma ischemia

BP Lowering Trials in ICH

INTERACT – Australia/NZ, China

- § Randomized open-label study
- § Entry criteria ? 2 SBP measurements (? 150 to ? 220 mm Hg)
- § BP-lowering regimen < 6 h of onset
- § BP Rx goals $\tilde{SBP} < 180 v$. SBP < 140
- § "Vanguard" phase completed 404 patients, 95% in China (Lancet, 2008)
 - § Possible modest effect on hematoma expansion in adjusted analysis
 - § No clinical efficacy signal
 - § ~2500 patient pivotal trial started in late 2008

ATACH – NIH (*CCM* 2010)

- § PI Adnan Qureshi; N=60
- § "Dose-escalation" study of safety & feasibility of achieving 3 successive BP goals for 24 hours after acute ICH
- § Conclusions -safe

Rapid Blood-Pressure Lowering in Patients with Acute Intracerebral Hemorrhage

Craig S. Anderson, M.D., Ph.D., Emma Heeley, Ph.D., Yining Huang, M.D., Jiguang Wang, M.D., Christian Stapf, M.D., Candice Delcourt, M.D., Richard Lindley, M.D., Thompson Robinson, M.D., Pablo Lavados, M.D., M.P.H., Bruce Neal, M.D., Ph.D., Jun Hata, M.D., Ph.D., Hisatomi Arima, M.D., Ph.D., Mark Parsons, M.D., Ph.D., Yuechun Li, M.D., Jinchao Wang, M.D., Stephane Heritier, Ph.D., Qiang Li, B.Sc., Mark Woodward, Ph.D., R. John Simes, M.D., Ph.D., Stephen M. Davis, M.D., and John Chalmers, M.D., Ph.D., for the INTERACT2 Investigators*

The NEW ENGLAND JOURNAL of MEDICINE Published online May 29, 2013

- Randomized 2839 subjects
- Same protocol as INTERACT
- Outcome at 90 days tested 2 ways
 - Rankin scale dichotomized at 2/3
- Proportional odds analysis across entire Rankin scale
 - 68% of subjects from China

Variable	Intensive Blood-Pressure Lowering (N=1399)	Guideline- Recommended Blood-Pressure Lowering (N=1430)	Odds Ratio (95% CI)	P Value
Primary outcome: death or major disability — no./total no. (%)†	719/1382 (52.0)	785/1412 (55.6)	0.87 (0.75-1.01)	0.06
Secondary outcomes	3	6%		
Score on the modified Rankin scale — no./total no. (%)‡		• / •	0.87 (0.77-1.00)	0.04
0: No symptoms at all	112/1382 (8.1)	107/1412 (7.6)		
1: No substantive disability despite symptoms	292/1382 (21.1)	254/1412 (18.0)		
2: Slight disability	259/1382 (18.7)	266/1412 (18.8)		
3: Moderate disability requiring some help	220/1382 (15.9)	234/1412 (16.6)		
4: Moderate–severe disability requiring assistance with daily living	250/1382 (18.1)	268/1412 (19.0)		
5: Severe disability, bed-bound and incontinent	83/1382 (6.0)	113/1412 (8.0)		
6: Death by 90 days	166/1382 (12.0)	170/1412 (12.0)		
Death — no./total no. (%)	166/1394 (11.9)	170/1421 (12.0)	0.99 (0.79-1.25)	0.96

No difference in hematoma expansion between groups

So does it work? Is it a clinically meaningful effect?

NOVO 7 Study:

incidence of PE: 1-2%

incidence of DVT: 2% (Mayer 2005 N Engl J Med)

Boeer A, et al. Early heparin therapy in patients with spontaneous intracerebral

haemorrhage. J Neurol Neurosurg Psychiatry 1991:

- early unfractionated heparin safe without bleeding complications

However: fear of rebleeding

"Hemorrhage growth":

- § No "significant": Volumen >33% in follow-up CT
- § 2 "moderate": Volumen >20% in follow-up CT

Anticoagulation vs. alternatives

- Design: Metaanalyse
- Inclusion criteria:
 - Indication: ICH
 - RCT, non-randomized controlled trials with
 - comparison of unfractionated heparin, LWMH or heparinoids with non-anticoagulation measurements (elastic stockings, compression devices, placebo
- Outcomes:
 - Symptomatic and asymptomatic DVT,
 - Symptomatic and asymptomatic PE,
 - Any form of haemtoma* enlargement or
 - Death

Anticoagulation vs. alternatives

Outcome:

Symptomatic und asymptomatic pulmonary embolism

Anticoagulation vs. alternatives

Outcome: mortality

Clinical routine – "difficult questions"

- Basic management (RR, DVT, aso)...?
- **Prevention of hematoma growth..?**
- Surgical hemorrhage evacuation...?
- Management of brain edema...?
- External ventricular drainage...?
- Management of intraventricular hemorrhage..?
- Subgroup OAC-ICH...?
- Withdrawel of therapy..?

Treatment Target - "hemorrhage growth"

Time window until CT	Brott ´97 n=103	Fujii ´94 n=627	Fujitsu ´90 n=107	Kazui ´96 n=204	TOTAL
0-3h	26%	18%	NA	36%	24%
3-6h	NA	8%	NA	16%	11%
0-6h	NA	17%	21%	29%	19%
6-24h	12%	2%	NA	10%	5%

Hematoma Expansion in ICH

Previously suggested as

§ rare

§ suggestive of underlying AVM, coagulopathy

Studies of early serial CT show as common

- § 72% of patients have some hematoma expansion over initial 24
- § 38% have significant (>33%) expansion over 24 hrs, usually clinically significant

§ w/in 1 hr in 26% of cases

Hematoma expansion worsens outcome

Davis et al. *Neurology* 2006 Brott et al. *Stroke* 1997

Hematoma Expansion in ICH

Hematoma Expansion in ICH

Characteristics

- § occurs mostly w/in 24 hours (esp. 6 hours) from onset
- § usually associated with clinical deterioration

Mechanism?

- § Associated with elevated BP?
 - § interaction of elevated glucose (or Hgb A_{1C}) and systolic blood pressure on admission \geq 200 mm Hg (Kazui 1998)
 - § Lack of association b/t hemodynamic factors and ICH hematoma growth (Jauch, *Stroke* 2006)
- § Perihematoma coagulopathy/DIC?

Is this a target for intervention?

Hemostatic Agents

FAST - Phase III Trial of rFVIIa in acute ICH ICH patients

- § Without coagulopathy
- § CT scan w/in 3 hours
- § Rx w/in 1 hour of CT scan
- § 841 patients randomized; 821 patients dosed

F/U of phase IIb trial that showed

- § Decreased hematoma expansion
- S Lower mortality and better functional outcome
- Modest increase in thrombotic events

First large ICH medical trial ever conducted Protocol similar to phase IIb trial rFVIIa 80 µg/kg vs 20 µg/kg vs placebo

FAST: Primary Results

Hematoma Growth at 24 hrs	Placebo	20 ? ĝ /kg	80 ? ĝ /kg	Р
Mean % change	26%	18%	11%	<0.001 (80 ? § /kg vs placebo)
Absolute difference	7.8 <u>+</u> 18.7	4.7 <u>+</u> 14.8	3.8 <u>+</u> 15.3	0.009 (80 ?ý⁄/kg vs placebo)
Modified Rankin Score <u>></u> 5 at 90 days	24%	26%	29%	NS
Mortality	19%	18%	21%	NS
Arterial Thrombotic Events	4%	5%	8%	0.04
Cerebral Infarction	1%	1%	3%	0.14

Reduces hematoma expansion

No effect on clinical outcome

Increase in arterial thrombotic events

Treatment Target - "hemorrhage growth"

rFVIIa: is there a chance?

CT "spot sign"

Contrast extravasation on CT angiography predicts hematoma expansion in intracerebral hemorrhage

J.N. Goldstein, MD, PhD; L.E. Fazen, BA; R. Snider, BA; K. Schwab, BA; S.M. Greenberg, MD, PhD; E.E. Smith, MD; M.H. Lev, MD; and J. Rosand, MD, MS

NEUROLOGY 2007;68:889-894

Treatment Target - "hemorrhage growth"

Prediction of haematoma growth and outcome in patients with intracerebral haemorrhage using the CT-angiography spot sign (PREDICT): a prospective observational study

Andrew M Demchuk, Dar Dowlatshahi, David Rodriguez-Luna, Carlos A Molina, Yolanda Silva Blas, Imanuel Działowski, Adam Kobayashi, Jean-Martin Boulanger, Cheemun Lum, Gord Gubitz, Vasantha Padma, Jayanta Roy, Carlos S Kase, Jayme Kosior, Rohit Bhatia, Sarah Tymchuk, Suresh Subramaniam, David J Gladstone, Michael D Hill, Richard I Aviv, for the PREDICT/Sunnybrook ICH CTA study group

Figure 2: Risk of death by CTA spot-sign status

Log-rank test p=0-0006. Shaded areas represent 95% confidence intervals.

Lancet Neurol 2012

 \mathbf{H}

Clinical routine – "difficult questions"

- Basic management (RR, DVT, aso)...?
- **Prevention of hematoma growth..?**
- Surgical hemorrhage evacuation...?
- Management of brain edema...?
- External ventricular drainage...?
- Management of intraventricular hemorrhage..?
- Subgroup OAC-ICH...?
- Withdrawel of therapy..?

ICH surgery

ICH surgery

Surgical Trial for ICH (STICH)

- Completed in 2003
- Largest study of surgery in ICH (>1000 pts)
- Does a policy of "Early Surgery" improve
- outcome in patients with spontaneous
- supratentorial ICH compared with a policy of
- "Initial Conservative Treatment"?
- § Randomisation within 72 hours of ictus
- § Surgery within 24 hours of randomisation
- § Selection based on "uncertainty principle"

ICH surgery

STICH (Surgical Trial in Intracerebral Hemorrhage)

Supratentorial ICH (n=1033)

Therapy within 72h

early Operation vs. konservative

"Uncertainty" principle

had CT evidence of a spontaneous supratentorial intracerebral haemorrhage that had arisen within 72 h

Study guidelines recommended

ICH surgery

STICH (Surgical Trial in Intracerebral Hemorrhage)

Figure 2: Kaplan-Meier survival curves

Mendelow 2005 Lancet

Surgical Trial for ICH (STICH)

- Completed in 2003
- Largest study of surgery in ICH (>1000 pts)
- Does a policy of "Early Surgery" improve
- outcome in patients with spontaneous
- supratentorial ICH compared with a policy of
- "Initial Conservative Treatment"?
- § Randomisation within 72 hours of ictus
- § Surgery within 24 hours of randomisation
- § Selection based on "uncertainty principle"

STICH - Results

Mortality	Early Surgery	Initial Conservative tx	
Alive	304 (64%)	316 (63%)	
Dead	173 (36%)	189 (37%)	
Primary Outcome ("Prognosis based" functional outcome)	Early Surgery	Initial Conservative tx	
Favourable	112 (26%)	118 (24%)	
Unfavourable	346 (74%)	351 (76%)	

No Difference

• 26% of patients randomised to Initial Conservative Treatment later had surgery

Early surgery is not harmful

There is no evidence favoring early surgery in supratentorial ICH

ICH surgery

STICH – Subgroup-Analysis

Study or subcategory	Early surgery n/N	Initial conservative treatment n/N	Odds ratio (fixed) 95% Cl	Odds ratio (fixed) 95% Cl					
					Age				
					<65	182/262	204/284	- B -	0.89 (0.62-1.29)
≥65	164/206	174/212		0.85 (0.52–1.39)					
GCS									
5-8	80/88	83/99		1.93 (0.78-4.75)					
9-12	140/187	158/196		0.72 (0.44-1.16)					
13 15	126/193	137/201		0-88 (0-58-1-34)					
Side of haematoma									
Left hemisphere	186/246	208/265		0.85 (0.56-1.28)					
Right hernisphere	160/222	170/231		0.93 (0.61–1.40)					
Site of haematoma			15177						
Lobar	107/181	130/194	(0.71 (0.47-1.08)					
Basal ganglia/ thalamos	236/284	247/300		1:05 (0:69-1:62)					
Haematoma volume									
≤50 mL	211/302	238/323	1	0.83 (0.58-1.17)					
>50 mL	135/166	140/173		1.03 (0.60-1.77)					
Depth from cortical surface									
≤1 cm	170/257	192/260		0.69 (0.47–1.01)					
>1 m	1/4/208	184/234		1-39 (0-86-2-25)					

Mendelow 2005 Lancet

Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial

A David Mendelow, Barbara A Gregson, Elise N Rowan, Gordon D Murray, Anil Gholkar, Patrick M Mitchell, for the STICH II Investigators

- Lobar ICH within 1 cm of cortical surface
 - Hematoma volume 10-100 cc
 - Randomized within 48 hours of onset
 - Best motor score on GCS of ≥ 5
 - Conscious
 - No intraventricular hemorrhage
- Randomly assigned to surgery within 12 hours or not
 6 month GOSE
 - "Prognosis-based" outcome
 - Enrolled ~5% of patients screened
- 21% of non-surgical group received delayed surgery

ICH surgery

Figure 2: Kaplan-Meier survival curve

Overall, no evidence for surgery in lobar ICH without IVH
 Maybe advantages in survival for those patients with poor prognosis

STICH II versus STICH I...

Trend for reduced mortality

Figure 2: Kaplan-Meier survival curves

SUPRATENTORIAL

No evidence and no general recommendation for surgery

INFRATENTORIAL

- § cerebellar ICH >2-3 cm,
- § Clinical worsening or imminent brain stem compression
 - with hydrocephalus
- § If surgery, probably the earlier the better

MISTIE

- Minimally invasive surgery plus recombinant t-PA for intracerebral hemorrhage evacuation (Mould *Stroke* 2013) (n=118)
- Dose-ranging and safety study for imageguided catheter placement with subsequent t-PA instillation and clot aspiration
- ICES group endoscopic hematoma removal
- Hematoma removal associated with
- decreased peri-hematomal edema
- MISTIE phase 3 trial proposed and under review at NIH

ICH surgery – minimal invasive

Surgical Intervention

ICH surgery – minimal invasive

Key I/E Criteria

Exclusion

Inclusion

➢Infratentorial ICH

- Vascular malformation or brain tumor
- Irreversibly impaired brainstem function

≻Age 18-75

>GCS ≤ 13 or NIHSS ≥ 6

Spontaneous supratentorial ICH <u>></u> 20cc

Stable clot at second CT scan performed <u>></u> 6 hours after diagnosis

ICH surgery – minimal invasive

ICH surgery

- conclusion and recommendations -

For most patients with ICH, the usefulness of surgery is uncertain	Class IIb, Level of Evidence New Recommendation
Patients with cerebellar hemorrhage who are deteriorating neurologically or who have brain stem compression and/or hydrocephalus from ventricular obstruction should undergo surgical removal of the hemorrhage as soon as possible	Class I, Level of Evidence B Revised recommendation
Initial treatment of these cerebellar hemorrhage patients with ventricular drainage alone rather than surgical evacuation is not recommended	Class III, Level of Evidence C). New Recommendation
For patients presenting with lobar clots >30 cc and within 1 cm of the surface, evacuation of supratentorial ICH by standard craniotomy might be considered	Class IIb, Level of Evidence B Updated recommendation
The effectiveness of minimally invasive clot evacuation utilizing either stereotactic or endoscopic aspiration with or without thrombolytic usage is uncertain and is considered investigational	Class IIb, Level of Evidence B New Recommendation
While theoretically attractive, no clear evidence at present indicates that ultra-early removal of supratentorial ICH improves functional outcome or mortality rate. Very early craniotomy may be harmful due to increased risk of recurrent bleeding	Class III, Level of Evidence B Revised from the previous guideline

Clinical routine – "difficult questions"

- Basic management (RR, DVT, aso)...?
- **Prevention of hematoma growth..?**
- Surgical hemorrhage evacuation...?
- External ventricular drainage...?
- Management of brain edema...?
- Management of intraventricular hemorrhage..?
- Subgroup OAC-ICH...?
- Withdrawel of therapy..?

Goal of cerebral monitoring:

Prevention of secondary brain damage

§ early recognition of reversible damage
§ monitoring of specific ICP-lowering therapy
§ helps establishing prognosis of cclinical course
§ may result in improved neurological outcome?

Acute life-saving procedure in occlusive hydrocephalus

Enables physician:

- § Drainage of CSF
- § ICP Monitoring

Indication:

Ventriculomegaly mit
§ GCS < 12
§ Hunt-Hess-Grad >= 2
§ Hunt-Hess-Grad >= 3
§ No response to contact

Patients with ongoing clinical worsening Patients who cannot be monitored clinically

Bicaudatus-Index

Index = $\frac{A}{B}$

Der Bicaudatus-Index is age-dependent:

< 36 y: 0,16 ... > 75 y: 0,21

van Gijn, JNS 1985 Hasan, Stroke 1989

Clinical routine – "difficult questions"

- Basic management (RR, DVT, aso)...?
- **Prevention of hematoma growth..?**
- Surgical hemorrhage evacuation...?
- External ventricular drainage...?
- Management of brain edema...?
- Management of intraventricular hemorrhage..?
- Subgroup OAC-ICH...?
- Withdrawel of therapy..?

Natural History of Perihematomal Edema After Intracerebral Hemorrhage Measured by Serial Magnetic Resonance Imaging

- à Ödementwicklung am ausgeprägtesten innerhalb der ersten 2 Tage
- à Maximale Ödenausbreitung gegen Ende der zweiten Woche

Treatment? When?

Lowering intracranial pressure*

Consider:

•Elevation of body position; if ICP probe consider CPP threshold (e.g.CPP> 60mmHg)

•EVD in case of hydrocephalus or clinical deterioration and neuroradiological evidence of brainstem compression

Osmotic therapy using

- Glycerol (500ml 10% per day)
- Mannitol (100ml 20%; day 1 to 5: 6/day; day 6: 3/day; day 7: 2/day)
- Hyper-HAES (3%, natrium value target area: 145 to 155 mmol/l or osmolality 310 to 320 mOsmol/kg
- Intermittent hyperventilation (pCO2 > 28 mmHg)
- Analgosedation
- •Hypothermia
- Haematoma evacuation with / without craniectomy

Treatment Target - "edema formation" - Decompressive Surgery? -

Kim 2009 Acta Neurochir

Figure 3. Third of serial CT scans of one patient showing course of events in right putaminal bleed and hemicraniectomy. On postoperative day 10, there is reduction in hematoma and basal cisterns are opening up.

Ramnarayan 2009 J Stroke Cerebrovasc Dis

Neurological Vignette

European Neurology

When Decompressive Craniectomy Does Not Lead to Decompression: Sinking Skin Flap Syndrome after Intracerebral Hemorrhage Received: October 8, 2010 Accepted: October 12, 2010 Published online: November 6, 2010

Experimental data from animals

- § Reduction of edema
- § Functional improvement

Stabilizes BBB

Reduction of inflammatory processes

prevents progression of edema formation

à early initiation?!

Fingas 2007 Exp Neurol Kawanishi 2008 J Stroke Cerebrovasc Dis

initial data from Erlangen, Germany (n=21)

Kollmar/Schwab 2010 Stroke

Clinical routine – "difficult questions"

- Basic management (RR, DVT, aso)...?
- **Prevention of hematoma growth..?**
- Surgical hemorrhage evacuation...?
- External ventricular drainage...?
- Management of brain edema...?
- Management of intraventricular hemorrhage..?
- Subgroup OAC-ICH...?
- Withdrawel of therapy..?

Glasgow Coma Scale <= 8, ICH size = 80cc, Pulse Pressure <= 85, Hydrocephalus present
 Glasgow Coma Scale <= 8, ICH size = 20cc, Pulse Pressure <= 85, Hydrocephalus present
 Glasgow Coma Scale > 8, ICH size = 80cc, Pulse Pressure <= 85, Hydrocephalus present
 Glasgow Coma Scale > 8, ICH size = 20cc, Pulse Pressure <= 85, Hydrocephalus present

IVH ?25–45% after primary ICH IVH + hydrocephalus ?05–30% Independent prognostic parameter Morbidity and mortality increased Lethality within 30 days: 43-59% (vs. 9% without IVH) STICH, NOVO 7, FAST: poor Outcome in 70-90 % Optimal treatment so far unknown

Insertion of external ventricular drains (EVD)

Acute life-saving procedure in occlusive hydrocephalus

CSF Collection Bag

Enables physician:

- § Drainage of CSF
- § Drainage of IVH
- § ICP Monitoring

Problems during course of the disease

Catheter track bleeds Parenchymal bleeds Addional trauma dislocation EVD-"occlusion"

Risk of infections

- à repeated EVD-exchanges
- after 2-3 EVD-exchanges
- à permanent VP-Shunt

Time and probability of infection after EVD placement

Rationale

Ensures functionality of EVD

Hastened IVH clot lysis

Reduction of increased ICP

Treatment of occlusive hydrocephalus

Avoidance of VP-shunts

Shortening of neurocritical care duration

CLEAR IVH

<u>C</u>lot <u>Lysis</u>: <u>Evaluating Accelerated Resolution of Intraventricular Hemorrhage rt-</u> PA Treatment of Brain Hemorrhage

A multicenter, randomized, double-blind, placebo-controlled trial

CLEAR-IVH - clinical Outcome of patients of CLEAR A & B -

...however, after 90 and 180 days

52%

CLEAR-IVH - Phase III -

Placebo-controlled

Double blinded

Randomized

Planned patients: 500 (currently ? 87)

Primary endpoint: mRS after 6 months

Power-assumption: 15 % "Shift" in Outcome mRS 0-3

CLEAR-III Enrollment

250 medical, 250 surgical

Hanley D, WSC 2012

Lokalisation der EVD und IVH-Clearance

- Design: N=100 (CLEAR IVH)
- Inclusion-criteria: SICH + IVH
- Ergebnisse:
 - 1. Clearance within 3 days: after rt-PA faster than placebo (p<0,005)
 - 2. Clearancs and location of EVD:
 - Lysis-group: faster when placed ipsilateral (p=0,09, 95% CI: 29,62 to 0,69)
 - 2. Placebo: no signal
 - ICH in III und IV. ventricle: EVD location (I or II ventricle) plays no role

Post-hemorrhagic hydrocephalus

3d after admission: ventricles free from blood

.....however, ICP increase after clamping of EVD

in >80% of all patients in acute phase

Post-hemorrhagic hydrocephalus

Problems of communicating hydrocephalus:

continuous EVD-drainage necessary

- Dislocation
- Infection
- Obstruction

Permanent VP-Shunt – when?

- decision on VP-Shunts usually after 2-3 weeks

?25%-33% of patients with EVD and aresorptive hydrocephalus need VPshunting (if not received IVF)

VP-Shunt - Malfunction

- § In 1. year up to 40% (even experienced neurosurgeons)
- § 70-80% of pateints with VP-Shunt need revision
- § Causes both on proximal and distal end
- § Infection up to 8-10%

Post-hemorrhagic hydrocephalus - Lumbar drains -

Concept of lumbar drains

- As soon as IVH is resorbed and "cleared"#
 and 4. ventricles (CT-based) and
- 2) EVD-clamping fails à
- Diagnosis of aresorptive hydrocephalus with communicating inner and outer CSF spaces

Placement of Lumbar drain should sufficiently drain CSF spaces – thereby replacing the EVD

Post-hemorrhagic hydrocephalus - Lumbar drains -

Post-hemorrhagic hydrocephalus - Lumbar drains -

Benefits of Lumbar drains compared to EVD

less invasive (à less complications such as catheter tract bleeds, symptomatic seizures) Quick exchange (bed-side technique)

- à duration of CSF drainage may be increased
- à Pacchioni Granulations have more time for reconstitution
- à Reduction of nessessity of VP-Shunts?

Combination of IVF and Lumbar drains

Avoidance of EVD-exchange and VP-Shunts by combination of intraventricular fibrinolysis and lumbar drains

Combination of IVF and Lumbar drains

Staykov et al. 2009 STROKE

Conclusion – Treatment of IVH

EVD placement in occlusive hydrocephalus

Intraventricular fibrinolysis speeds-up clot resolution

- Intraventricular fibrinolysis leads to
- § less EVD-exchanges
- § less VP-shunts
- § Influenes outcome? (CLEAR-IVH)

As soon as aresorptive hydrocephalus is diagnosed à place LD

Lumbar drainage leads to

- § Less EVD-exchanges
- § Less VP-shunts

Combination of IVF and LD leads to

- § No EVD-exchanges
- § Almost no VP-shunts

Clinical routine – "difficult questions"

- Basic management (RR, DVT, aso)...?
- **Prevention of hematoma growth..?**
- Surgical hemorrhage evacuation...?
- External ventricular drainage...?
- Management of brain edema...?
- Management of intraventricular hemorrhage..?
- Subgroup OAC-ICH...?
- Withdrawel of therapy..?

Treatment Target - "hemorrhage growth"ICH related to oral anticoagulants -

Treatment Target - "hemorrhage growth" - ICH related to oral anticoagulants -

ICH volume larger the higher the INR (>3)

Outcome OAT-ICH worse than primary ICH

Mortality up to 67% after 1y

Predictors for hematoma growth:

§ initial systolic BP

CT scans from 15-mL (A) and 40-mL (B) deep cerebral intracerebral hemorrhages (ICHs). This approximates the difference between an ICH with an international normalized ratio (INR) <1.2 and an ICH with an INR >3.0 as seen in the multivariable generalized linear model.

(Flaherty ML, et al. Neurology 2008)

(Rosand J, et al. Arch Intern Med)

(Zubkov AY, et al. Arch Neurol. 2008)

(Huttner HB, et al. Stroke 2006)

Treatment Target - "hemorrhage growth"ICH related to oral anticoagulants -

Treatment options for INR reversal:

Vitamin K

Fresh Frozen Plasma (FFP)

Prothrombin Complex Concentrate (PCC)

rFaktor VIIa

Treatment Target - "hemorrhage growth" - ICH related to oral anticoagulants -

INR < 1.5	PCC / +	FFP / +	VAK
	(N=31)	(N=18)	(N=6)
Growth	19.3% P<0.01	33.3%	50%

INR < 1.5 within 2 hours	26 (83%) P<0.01	7 (38.8%)	0
Growth	19.2% n.s.	28.5%	0

Conclusions

ESO recommendation

Conclusion

1.Acute hypertension: Lowering blood pressure seems to be safe

2.Hematoma expansion

- No hemostatic therapy outside of trials
- Consider individually: evacuation in lobar ICH without IV

3. Intraventricular hemorrhage and hydrocephalus

- EVD if hydrocephalus apparent
- 4. Elevated ICP: Consider intervention at ICP 20mmHg

5.Seizures: treat only if clinically / electrophysiologically detectable

6.Fever: normothermia

7.Thromboprophylaxis: LMWH / stockings+compression devices

Clinical routine – "difficult questions"

- Basic management (RR, DVT, aso)...?
- **Prevention of hematoma growth..?**
- Surgical hemorrhage evacuation...?
- External ventricular drainage...?
- Management of brain edema...?
- Management of intraventricular hemorrhage..?
- Subgroup OAC-ICH...?
- Withdrawel of therapy..?

Termination of therapy: when and how?

IMAGES IN CLINICAL MEDICINE

Central Nervous System Hemorrhage

§ 68 J., Warfarin (INR = 2,2); comatose, GCS = 3; areactive pupil; CT
§ The only discussion of palliative therapy was in the last sentence:

After discussions with the patient's family, the goals of care were shifted toward comfort measures. He was extubated and died.

Never Extubate a Dying Patient?

Docs identify "significant" brain activity

Being familiar with other medical blogs is a great way to keep up on how other doctors and nurses approach care for the dying. In fact, many of the most popular posts always seem to involve frustrations of medical futility, or the emotional impact of caring for dying patients. The range in tone for these p demeaning of patients and families to eloquent and demonstrative of the c

A <u>recent post</u> by the anonymous blogger, <u>the Buckeye Surgeon</u>, highlighted came across the post from Kevin MD, a popular medical blog aggregator.

47-y male, 2h ago headache, Hemiparese right, aphasia, Somnolent.

	20%	10%
	80%	90%
	80%	90%
9	80%	90%
	50%	70%
	50%	70%
	50%	70%
	80%	90%
-F-	50%	50%
	30%	50%
	60%	90%

20% 60%

admission

%	§ Normal (Morphin)
	§ Stroke (Mittelweg)
%	§ Intensiv
%	EVD?
%	Intraventrikular lysis?
%	If sepsis then full therapy?
%	Dialysis if renal failure?
%	ARDS-treatment >72h?
	ICP Therapy:
%	§ Mannitol
%	§ Hypothermia?
%	§ Barbiturates?

Reanimation:

- § pharmacological?
- § defibrillation?

78-y woman, previous healthy, 3h ago acute hemiparesis left, dysarthria, Somnolenz.

admission

90%	50%	§ Normal (Morphin)§ Stroke (Mittelweg)
10%	50%	§ Intensiv
1 0%	50%	EVD?
1 0%	50%	Intraventrikular lysis?
1 0%	40%	If sepsis then full therapy?
0%	30%	Dialysis if renal failure?
0%	30%	ARDS-treatment >72h?
		ICP Therapy:
10%	50%	§ Mannitol
0%	40%	§ Hypothermia?
0%	20%	§ Barbiturates?
		Reanimation:
10%	50%	§ pharmacological?
0%	20%	§ defibrillation?

If there was a standard advance directive

End-of-Life Practices in European Intensive Care Units

The Ethicus Study

JAMA, August 13, 2003-Vol 290,

CHEST

Original Research

CRITICAL CARE MEDICINE

Predictors of Time to Death After Terminal Withdrawal of Mechanical Ventilation in the ICU

Colin R. Cooke, MD; David L. Hotchkin, MD; Ruth A. Engelberg, PhD; Lewis Rubinson, MD, PhD, FCCP; and J. Randall Curtis, MD, FCCP

Problem, if age is most important parameter for decision

Withdrawal of support in intracerebral hemorrhage may lead to self-fulfilling prophecies

K.J. Becker, MD; A.B. Baxter, MD; W.A. Cohen, MD; H.M. Bybee, BSN; D.L. Tirschwell, MD, MSc; D.W. Newell, MD; H.R. Winn, MD; and W.T. Longstreth, Jr., MD

NEUROLOGY 2001;56:766-772

Self fulfilling prophecy with withdrawal of life support

Withdrawal of support in intracerebral hemorrhage may lead to self-fulfilling prophecies

K.J. Becker, MD; A.B. Baxter, MD; W.A. Cohen, MD; H.M. Bybee, BSN; D.L. Tirschwell MD, MSc. D.W. Newell, MD; H.R. Winn, MD; and W.T. Longstreth, Neurology 2001

Neurologic Critical Care

Do-not-attempt-resuscitation orders and prognostic models for intraparenchymal hemorrhage*

Claire J. Creutzfeldt, MD; Kyra J. Becker, MD; Jonathan R. Weinstein, MD, PhD; Sandeen P. Khot, MD; Thomas O. McPharlin, RPh; Thanh G. Ton, PhD; W. T. Longstreth, Jr., MD; David Crit Care Med 2011

Clinician predictions of intensive care unit mortality*

Graeme Rocker, DM; Deborah Cook, MD; Peter Sjokvist, MD†; Bruce Weaver, MSc; Simon Finfer, MD; Ellen McDonald, RN; John Marshall, MD; Anne Kirby, MD; Mitchell Levy, MD; Peter Dodek, MD; Daren Heyland, MD; Gordon Guyatt, MD; for the Level of Care Study Investigators and the Canadian Critical Care Trials Group

Independent Predictors of Mortality	HR (95% CI)	p Value	
Admission illness severity			
APACHE II score (5-unit increments)	1.16(1.08 - 1.24)	<.001	
Daily factors			
MODS (5-unit increments)	2.50 (2.06-3.04)	< .001	
Inotropic agents or vasopressors	2.14(1.66-2.77)	< .001	
Dialysis	0.51 (0.35-0.75)	.001	

Table 2. Factors predicting intensive care unit (ICU) mortality for 851mechanically ventilated patients

Voluntas aegroti suprema lex

the will of the patient is to be the highest law

We do know the will of the patient in ICH

Kiphuth et al. 2010. Crit Care 14:R144

	Consent to treatment OR (95% CI)	P value
Multivariate analysis		
Ischemia	0.294 (0.169-0.509)	< 0.0001
ICH	0.306 (0.173-0.541)	< 0.0001
Meningoencephalitis	1.076 (0.426-2.721)	0.8764
Epilepsy	0.568 (0.274-1.179)	0.1289
GBS/MG	0.698 (0.218-2.230)	0.5426
Neurodeg/Encephalopathy	0.821 (0.691-1.368)	0.2574
Cerebral neoplasm	0.572 (0.378-0.911)	0.0097
mRS	0.610 (0.555-0.671)	< 0.0001

Table 4 Parameters predicting retrospective consent

Kiphuth et al. 2010. Crit Care 14:R144

Kiphuth et al. 2010. Crit Care 14:R136

