



*P. Kapeller*, Abt. f. Neurologie u. Psychosomatik

## Stroke

Peter Kapeller Dept. o. Neurology – LKH Villach Austria

## Disclosures

- I serve on scientific advisory boards for Bayer-Schering, Böhringer Ingelheim, Biogen Idec, Genzyme, Merck Serono, Pfizer, Novartis, Perceptive Informatics and Teva Pharmaceutical Industries Ltd.
- I have received speaker honoraria and support from Biogen Idec, Böhringer Ingelheim, Bayer Schering, Merck Serono, Novartis, Pfizer, Sanofi-Aventis and Teva Pharmaceutical Industries Ltd.

Acute phase

## Subacute/chronic phase

## Acute phase

Ischemia Intracerebral hemorraghe (ICH) Subarachnoid hemorrhage (SAH)

In the acute phase imaging is driven by the question whether or not to apply systemic thrombolyses

ICH excluded? – lesion size?

Neuroimaging in the management of acute ischemic stroke

## Relevance for what ?

- 8 Diagnosis
  - Is it ischemic stroke ?
- 8 Acute treatment
  - Whom to treat ?
  - How to treat ?
- 8 Preventive treatment strategies
  - Stroke etiology

Imaging techniques to consider

8 CT

## 8 MRI

- 8 Vascular Imaging
  - Intracranial
  - extracranial
- 8 Perfusion Imaging
- 8 Multimodal imaging

# Sensitivity and specificity of CT versus MRI in the diagnosis of stroke

|             | n   | Acute stroke  | Acute stroke |               | Acute ischaemic stroke |  |
|-------------|-----|---------------|--------------|---------------|------------------------|--|
|             |     | СТ            | MRI          | ст            | MRI                    |  |
| Sensitivity |     |               |              |               |                        |  |
| All         | 356 | 26% (20–32)   | 83% (78–88)  | 16% (12–23)   | 83% (77–88)            |  |
| >12 h       | 135 | 22% (14-33)   | 91% (82–96)  | 16% (9–27)    | 92% (83–97)            |  |
| 3–12 h      | 131 | 29% (19-41)   | 81% (70-89)  | 20% (12–33)   | 81% (69–90)            |  |
| <3 h        | 90  | 27% (17-40)   | 76% (64–86)  | 12% (5–24)    | 73% (59–84)            |  |
| Specificity |     |               |              |               |                        |  |
| All         | 356 | 98% (93-99)   | 97% (92–99)  | 98% (94–99)   | 96% (92–99)            |  |
| >12 h       | 135 | 98% (89–100)  | 96% (86–99)  | 98% (90–100)  | 97% (88–99)            |  |
| 3–12 h      | 131 | 97% (87–99)   | 98% (90–100) | 96% (87–99)   | 99% (91–100)           |  |
| <3 h        | 90  | 100% (85–100) | 96% (79–100) | 100% (89–100) | 92% (78–98)            |  |

Chalela JA et al., Lancet 2007;369:293-298

## Acute ischemia

| MR sequence                    | Time from<br>attack | Sensitivity | Specificity |
|--------------------------------|---------------------|-------------|-------------|
| DWI                            | 45 – 90 min         | +++         | +++         |
| FLAIR / T2 / PD                | 60-120 min          | ++          | +           |
| Τ1                             | > 90 min            | 0           | 0           |
| T1 + Gad pos. /<br>enhancement | 3-7 days            | +           | ++          |

#### CT characteristics of acute ischemic lesions and their evolution

| stages                      | Morphologic changes                                                                                                                                                                                                                                                                  | time                                 |  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| initial (acute)             | vague blurring of grey-white matter boundaries,<br>slight attenuation of the insular ribbon, slight<br>indistinctness of basal ganglia grey matter,<br>suggestion of crowding sulci (subtle mass effect)<br>"dense artery" sign<br>changes become increasingly distinct              | first hours                          |  |
| developmental<br>(subacute) | distinctly hypodense area within territory of<br>vascular supply<br>focal swelling / mass effect (sulcal and / or<br>ventricular effacement)<br>contrast enhancement (especially of grey matter<br>structures)<br>"fogging" (area of ischemia becomes poorly<br>recognizable - rare) | > day 1 to 2-4<br>weeks<br>2-3 weeks |  |
| late (old infarct)          | demarcated area of pronounced hypodensity (close<br>to CSF), cystic cavity<br>focal atrophy                                                                                                                                                                                          | 4-6 weeks                            |  |

#### Acute and old infarcts





Very early infarct signs





#### Understanding Alberta Stroke Program Early CT Score (ASPECTS)



Home Imaging in Acute Stroke ASPECTS Scan Parameters Training Collateral scoring Contacts



#### What is ASPECTS

Alberta Stroke Program Early CT score (ASPECTS) is a 10-point quantitative topographic CT scan score

ASPECTS was developed to offer the reliability and utility of a standard CT examination with a reproducible grading system to assess early ischemic changes on pretreatment CT studies in patients with acute ischemic stroke of the anterior circulation

#### How to compute ASPECTS

ASPECTS is determined from evaluation of two standardized regions of the MCA territory: the basal ganglia level, where the thalamus, basal ganglia, and caudate are visible, and the supraganglionic level, which includes the corona radiata and centrum semiovale

All cuts with basal ganglionic or supraganglionic structures visible are required to determine if an area is involved. The abnormality should be visible on at least two consecutive cuts to ensure that it is truly abnormal rather than a volume averaging effect

- To compute the ASPECTS, 1 point is subtracted from 10 for any evidence of early ischemic change for each of the defined regions.
- · A normal CT scan receives ASPECTS of 10 points.
- A score of 0 indicates diffuse involvement throughout the MCA territory

Axial NCCT images showing the MCA territory regions as defined by ASPECTS. C- Caudate, I- Insularribbon, IC- Internal Capsule, L- Lentiform nucleus, M1-Anterior MCAcortex, M2- MCA cortex lateral to the insular ribbon, M3- PosteriorMCA cortex, M4, M5, M6 are the anterior, lateral and posterior MCAterritories immediately superior to M1, M2 and M3, rostral to basalganglia. Subcortical structures are allotted 3 points (C, L, and IC).MCA cortex is allotted 7 points (insular cortex, M1, M2, M3, M4, M5and M6)



#### MRI characteristics of acute ischemic lesions and their evolution

| stage                       | e signal changes                                                                                                                                                                                                               |                                                 |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| initial (acute)             | DWI hyperintensity (reduced ADC)<br>T2 hyperintensity (T2-weighted sequences, FLAIR),<br>often early on vague and indistinct<br>No or minimal T1 hypointensity<br>subtle mass effect<br>Absence of "flow void", "vessel signs" | 45 – 90 minutes<br>60 minutes to first<br>hours |
| developmental<br>(subacute) | bright lesion on DWI (reduced ADC), "light bulb"<br>well defined area of T2 hyperintensity (T2-weighted<br>sequences, FLAIR)<br>T1 hypointensity<br>mass effect (sulcal and /or ventricular effacement)                        | > day 1 to 2-4<br>weeks                         |
|                             | gyriform contrast enhancement                                                                                                                                                                                                  | > 3-7 days                                      |
| late (old infarct)          | demarcated lesion with central isointensity to CSF on<br>all sequences, ie. cystic cavity<br>focal atrophy                                                                                                                     | 4-6 weeks                                       |



## Diffusion weighted MRI



ADC map



MRI and CT of acute and old infarcts



#### CT characteristics of intracerebral hemorrhage (ICH)

| stage             | morphologic changes                                                                                         | time                           |  |
|-------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------|--|
| acute             | hyperdense (~ 80 H.U.)<br>density may be less with anemia or coagulopathy<br>mass effect<br>perifocal edema | within minutes<br>within hours |  |
| subacute          | isodense with brain                                                                                         | > 10 days                      |  |
| chronic (old ICH) | cystic lesions with density similar to CSF                                                                  | several weeks                  |  |

# Acute intracerebral and subarachnoid bleedings



#### Subarachnoid hemorrhage



#### MRI characteristics of intracerebral hemorrhage (ICH)

|  | stage                                        | signal intensity |                                  | other characteristics             |                                                                    |
|--|----------------------------------------------|------------------|----------------------------------|-----------------------------------|--------------------------------------------------------------------|
|  |                                              | T1               | T2                               | T2 *                              |                                                                    |
|  | hyperacute<br>(minutes to<br>hours)          | _                | Ť                                | periphery<br>↓↓<br>central<br>— ↑ |                                                                    |
|  | acute<br>(hours to<br>several days)          | ¥                | ¥                                | ¥                                 | surrounding high signal of edema on T2                             |
|  | subacute<br>(several days to<br>weeks)       | <b>↑ ↑ ↑</b>     | early<br>↓<br>then<br>↑ ↑        | ↓ ↓                               | change of signal<br>intensities starts at<br>periphery of hematoma |
|  | chronic (old<br>ICH)<br>(> several<br>weeks) | ¥                | periphery<br>↓<br>central<br>↑ ↑ | periphery<br>↓↓↓<br>central       | focal atrophy / cystic<br>cavity                                   |

MRI characteristics of intracerebral hemorrhage (ICH)



Subarachnoid hemorrhage on MRI



MRI allows to detect intracerebral bleeding with a sensitivity at least as high as that of CT





### Subacute and old bleds / microbleeds – a clue to diagnosis ?



Characteristics of small vessel disease



#### The contribution of CTA amd MRA



#### The contribution of MR perfusion



## Rules

- You just see what the method / sequence can show. This is also true for the selection of the region to be examined J
- Changes in density / signal intensity have a time course. For every interpretation you need to consider the interval between the clinical event and the time of imaging.
- Typical patterns of signal changes on different sequences and their likely ,,timing" can serve to support or refute your suspected diagnosis.
- Look carefully at all structures, regions, sequences in order not to miss concomitant / incidental abnormalities which may still be important.
- A negative finding on CT **or** MRI does not necessarily exclude the diagnosis of stroke.

Special thanks goes to

## FRANZ FAZEKAS

for providing numerous slides for this presentation