Pharmacogenetics PGx

How far have we come and what can we expect?

Fritz Zimprich

Dept. of Neurology, Medical University of Vienna

World Congress of Neurology 2013

Outline of presentation

- Key definitions in Pharmacogentics (PGx) What do we expect form PGx? What kind of genes are we interested in?
- § Examples of clinicially relevant achievements in PGx
- § Obstacles and Outlook

Pharmacogenetics definition

§ Pharmacogenetics (PGX) studies:

...how genetic differences between individuals affect their individual reaction to drugs.

§ The ultimate goal:
... personalised drug
therapy

Our wish list

PGx should help in predicting...

... how effective a drug will be

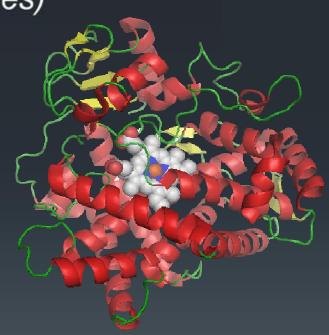
... the correct dose (dose related side-effects)

...idiosyncratic side effects

...development of new drugs

Genes of interest in PGx

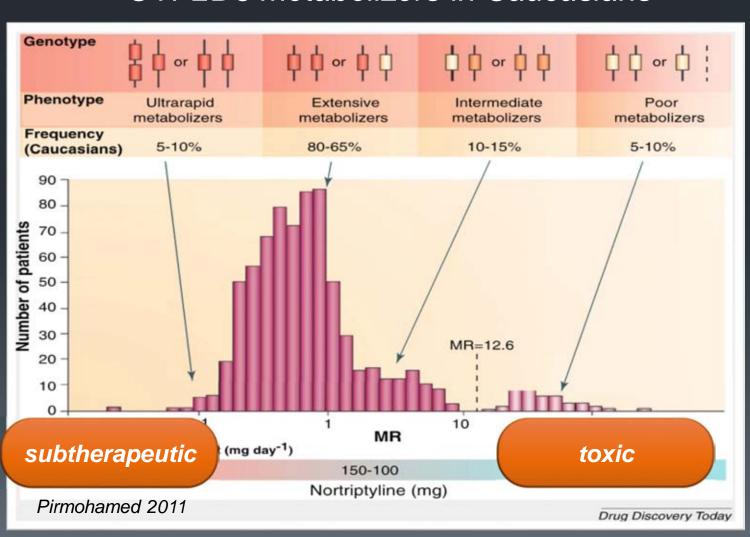
Pharmacokinetics


How the body affects a drug over a period of time as a function of **absorption**, **distribution**, **metabolism and excretion**.

Pharmacodynamics

The desired or adverse biological (for example, biochemical or physiological) effect of a drug on the body.

Pharmacokinetics: Variability in metabolizing enzymes


- Cytochrome P450 family (57 genes)
- § 30-50 % of all drugs metabolized by CYP450-family
- **§** Highly polymorphic genes
 - alleles with reduced function/ loss of function
 - alleles with gain-of-function

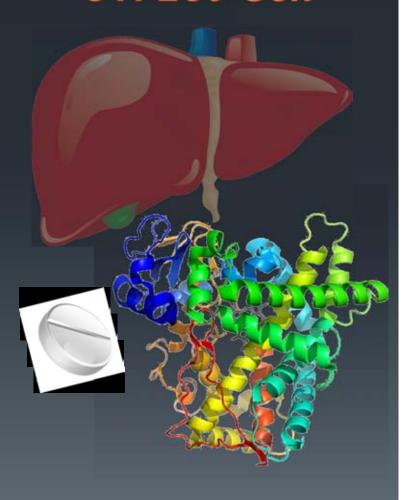
CYP2D6 80 different alleles

Pharmacokinetics: Variability in metabolizing enzymes

CYP2D6 metabolizers in Caucasians

Case report: Phenytoin toxicity (Kidd et al., 2001)

- 64 yr. woman, Stat. epilept.
 -> 300 mg PHT
- § 2 wks later -> severe PHT intoxication (49,5 μg/ml)
- § Only 17% of clearance capacity
- § Half-life of 13 days (normal 6 -24 hrs)
- S CYP2C9: 90% of PHT metabolism
- § Patient homozygous for CYP2C9 *6 allele (loss of function)



CYP2C9 alleles and PHT in population

- * Several CYP2C9 alleles (*2, *3, promoter variants) associated with reduced enzymatic activity
- § Multivariate models explain 47% of PHT maintenance dose (Chaudhry, 2010)

§ not in clinical use

CYP2C9-Gen

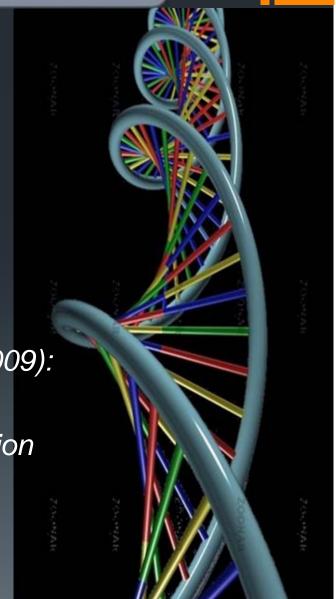
Pharmakokinetics – Variability in the distribution of drugs

Multi-drug resistance proteins

§ P-glycoprotein implicated in phenomenon of pharmacoresistance in epilepsy (AED – Efflux)

Solution De la proteins play a role?

P-gylcoprotein (PGP)


PGx and pharmakoresistence

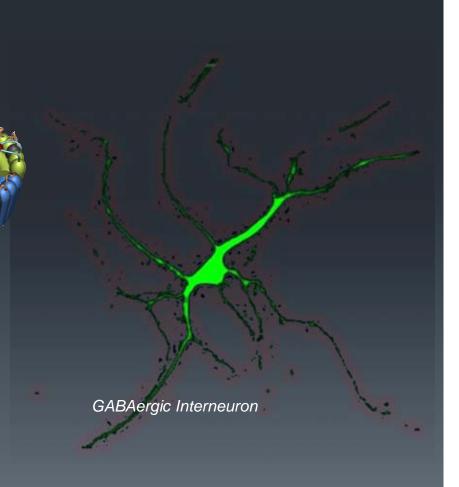
ABCB1-gene (P-glycoprotein)

§ Numerous studies of C3435T-genotype with pharmacoresistance in epilepsy -> results contradictory

Metaanalysis negative (Bournissen, 2009):

but heterotgeneous phenotype/ medication

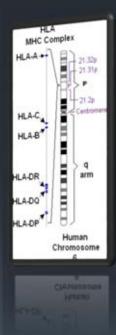
PGX and pharmacodynamics


§ focus on genes of drug targets

Example:

Sodium channel gene SCN1A – Dravet Syndrom

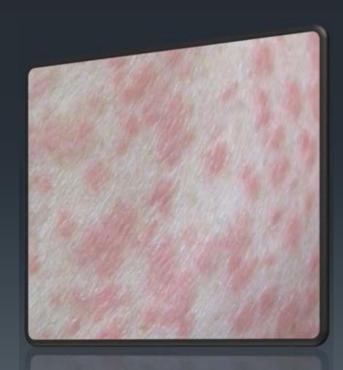
§ Genetics helps in rationalizing AED therapy


---> no Na-channel AEDs

PGx: clinical examples

§ Idiosyncratic cutaneous reaction on carbamazepine and HLA-genes

Solution Clopidogrel efficacy and CYP2C19 genotypes


AEDs and cutaneous side-effects

Maculopapular exanthema (MPE)

- 9 in 4%-10% of all AEDs
- § mild and transient after discont.

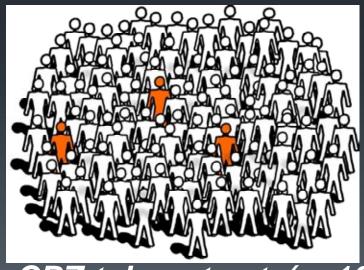
Hypersensitivity syndrome (HSS)

- § eosinophilia, systemic symptoms,
- § lethality 10 %

AEDs and cutaneous side-effects

Stevens–Johnson syndrome (SJS) toxic epidermal necrolysis (TEN)

- § generalized vesicular exanthema (mucous membranes)
- § fever and system. reactions
- § *lethality* 5% (SJS) **30%** (TEN)
- § risk with aromatic AEDs 0,2% nach CBZ


SJS / TEN & carbamazepine (in Han-Chinese)

- Solution States of the Stat
- § Near perfect association with

HLA-B*1502

SJS/TEN-patients (n=44) 100% HLA-B*1502

CBZ-tolerant pat. (n=101)

3% HLA-B*1502

Ethnicity and HLA-B*1502 / SJS / CBZ

§ Association repeat. confirmed in SO-Asia

§ No association in Europeans, Japanese

Lonjou 2006 Ozeki, 2011

§ Allele-frequencies:

8% in Asia 0,1% in Japan/Europa

HLA-B*1502 and other AEDs

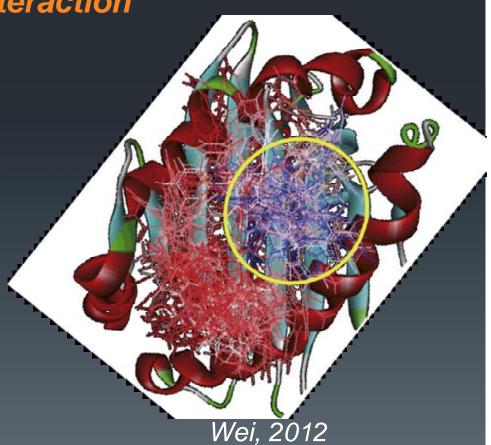
HLA-B*1502 association...

§ ...extends to other aromatic AEDs

(Hung, 2010 He, 2012)

§ ...specific for SJS/TEN
i.e. no association with
(MPE or HSS)

Mechanism of HLA-B*1502 effect


§ direct HLA-B - CBZ interaction

...no need for CBZ-metabolism

§ robust immunologial synapse

*HLA-B*1502 CBZ*

TCR

HLA-B*1502 as a biomarker for SJS/Ten in Han-Chinese

- sensitivity < 98.3%, specificity 95.8% (OR: 113,4)
- § Negative predictive value: 99.9% Positive predictive value: 5.6%.

FDA-Alert:

§ :... "Patients with ancestry from areas in which HLA-B*1502 is present should be screened for the HLA-B*1502 allele before starting treatment with carbamazepine." (2007)

HLA-B*1502 in clinical practice in prevention of SJS/Ten in Han-Chinese

Chen, NEJM, 2011
Prospektive
multicentric study,
Taiwan, 2007–10

4855 patients before CBZ-therapy

testing for HLA-B*1502

7,7% positive ê

alternat. medication

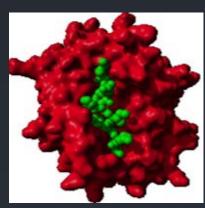
92,3% negative

ê

CBZ

follow up: 2 months

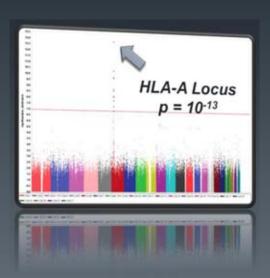
NO case of SJS/TEN (10 expected)


Number needed to screen: 461

(to prevent on case of SJS) (Yip, 2012)

Are other HLA-genes associated with AED induced cutaneous SE?

HLA-A*3101


§ associated with whole spectrum of cutaneous SE (MPE - HSS - SJS/TEN) after CBZ -treatment

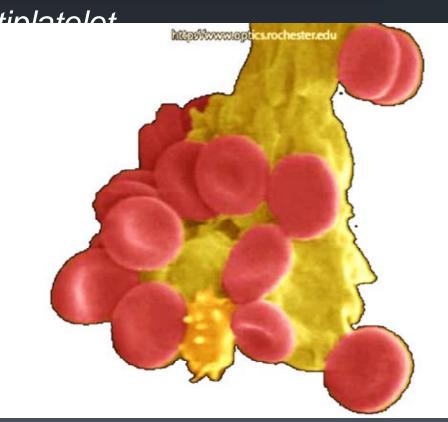
?æchain of MHC class l

§ global occurence (2% -9%)

§ example of successful GWAS

HLA-A*3101: a biomarker for CBZ-associated cutaneous SE

	Ozeki 2011	McCormack 2011
Sensitivity	60.7%	26%
Specificity	87.5%	96%
Odds Ratio	10.8	9,1
Pos. predictive value	12.7%	26%


Number needed to screen: 47-67

Clopidogrel pharmacogenetics

Clopidogrel widely used antiplatelet agent with interpatient variance
 30% do NOT respond eff

- S Clopidogrel is a prodrug converted by CYP2C19 into active metabolite
- § CYP2C19*2: a common loss of function allele (>12

*2-allele carriers show reduced clopidogrel platelet inhibition

Clopidogrel pharmacogenetics

- § CYP2C19*2-allele carriers show increased risk for clopidogrel treatment failure (cardiovascular events)
- § Meta-analysis (Mega et al. 2010) 9685 patients with coronary artery disease

RISK INCREASE (for cardiovascular events under clopidogrel)	Allel *2 heterozygotes	Allel *2 homozygotes
Stent thrombosis	2,67	3,97

Clopidogrel pharmacogenetics

Sparianes

§ 2010: boxed FDA warning:

It is estimated that 2 to 14%of the U.S. population are poor metabolizers. The FDA recommends that health care professionals consider alternative dosing of Plavix for these patients, or consider using other anti-platelet medications. Tests are available to assess CYP2C19 genotype to determine if a patient is a poor metabolizer.

S Development of point of care genotyping devices and clinical guidelines

§ Prospective radomized trials underway to test clinical utility.

Organ or system involved	Associated gene/allele	Drug/drug response phenotype	
Blood			
Red blood cells	G6PD	Primaguine and others	
Neutrophils	TPMT*2	Azathioprine/6MP-induced neutropenia	
	UGT1A1*28	Irintotecan-induced neutropenia	
Platelets	CYP2C19*2	Stent thrombosis	
Coagulation	CYP2C9*2, *3, VKORC1	Warfarin dose-requirement	
Brain and peripheral nervous s	ystem		
CNS depression	CYP2D6*N	Codeine-related sedation and respiratory depression	
Anaesthesia	Butyrylcholinesterase	Prolonged apnoea	
Peripheral nerves	NAT-2	Isoniazid-induced peripheral neuropathy	
Drug hypersensitivity	HLA-B*5701	Abacavir hypersensitivity	
	HLA-B*1502	Carbamazepine-induced Stevens Johnson syndrome (in some Asian groups)	
	HLA-A*3101	Carbamazepine-induced hypersensitivity in Caucasians and Japanese	
	HLA-B*5801	Allopurinol-induced serious cutaneous reactions	
Drug-induced liver injury	HLA-B*5701	Flucloxacillin	
	HLA-DRB1*1501-DQB1*0602	Co-amoxiclav	
	HLA-DRB1*1501-DQB1*0602	Lumiracoxib	
	HLA-DRB1*07-DQA1*02	Ximelagatran	
	HLA-DQA1*0201	Lapatinib	
Infection			
HIV-1 infection	CCR5	Maraviroc efficacy	
Hepatitis C infection	IL28B	Interferon-alpha efficacy	
Malignancy			
Breast cancer	CYP2D6	Response to tamoxifen	
Chronic myeloid leukaemia	BCR-ABL	Imatinib and other tyrosine kinase inhibitors	
Colon cancer	KRAS	Cetuximab efficacy	
GI stromal tumours	c-kit	Imatinib efficacy	
Lung cancer	EGFR	Gefitinib efficacy	
	EML4-ALK	Crizotinib efficacy	
Malignant melanoma	BRAF V600E	Vemurafenib efficacy	
Muscle			
General anaesthetics	Ryanodine receptor	Malignant hyperthermia	
Statins	SLCO1B1	Myopathy/rhabdomyolysis	

Pharmacogenetics – Challenges and Obstacles in Clinical Application

- 1. Need to discover more PGx phenotype/genotype associations
 - § Maximise patient numbers (collaborative studies)
 - § Improve phenotyping (endophenotypes)
 - § Prefer genome-wide studies (GWAS, NGS)

Pharmacogenetics – Challenges and Obstacles in Clinical Application

- 2. What level of evidence is necessary?
 - § Where possible prospective/randomized trials to demonstrate utility of PGx-test
 - § ... but randomized trials **not always feasible** as little incentive for established drugs.
 - § Principle of Noninferiority of genetic test (prescribing practice with genetic test not worse for patients than without test)

Pharmacogenetics – Challenges and Obstacles in Clinical Application

The eMERGE Network

2. How to bridge the translational gap?

- PGx-tests must become affordable and fast.
 - Point of care devices
 - preemptive genotyping
- § Facilitate interpretation
 of test results
 (Teaching, guidelines and clinical pathways)

Future of pharmacogenetics

In spite of many obstacles
PGx has the potential to transform medical care in
the not too distant future