> Prof. Jean-Marc Burgunder, M.D. Departments of Neurology, Universities of Bern (Switzerland) Sichuan, Chengdu (China) Central South, Changsha (China) Sun Yat Sen, Guangdong (China)

> > NeuroBu Clinics Steinerstrasse 45 CH-3006 Bern Jean-Marc.Burgunder@dkf.unibe.ch

Disclosure slide

• The speaker has no conflict of interest to disclose

Case report

- History
 - Muscle weakness and pain since childhood
 - Anxiety
 - Burnout syndrome
- Present complains
 - fluctuating tremor
 - panic attacks
 - Worsening of the muscle symptoms
 - Exercise intolerance, myalgia, weakness
- Neurological investigations
- Dystonia fingers right
- Sensory deficits right

Case report

- History
 - muscle weakness and pain since childhood
 - anxiety
 - burnout syndrome
- Present complains
 - fluctuating tremor
 - panic attacks
 - worsening of the muscle symptoms
 - Exercise intolerance, myalgia, weakness
- Neurological investigations
- Dystonia fingers right
- Sensory deficits right

Fear of Parkinson, like in her Father

Learning objectives

- To increase awareness about the basic approach to patients with potential neurogenetic disorders
- To know the basic principles involved in neurogenetic counselling
- To understand the place of molecular genetic testing in neurogenetic disorders

Plan

- Neurogenetic encounter
- Genetic "counselling"
- How to proceed
- Choice of a genetic testing
- Interpretation and explanation of findings
- Risk explanation

Plan

- Neurogenetic encounter
- Genetic "counselling"
- How to proceed
- Choice of a genetic testing
- Interpretation and explanation of findings
- Risk explanation

Frequency of Inherited Disorders Database ©

Institute of Medical Genetics

Powered by CARDIFF Unevelative CVRDVD **Body System** Count Cardiac disorder 24 34 Endocrine disorder Eye disorder 44 31 Gastrointestinal disorder Haematological disorder 353 Mental handicap disorder 22 Metabolic disorder 234 69 Miscellaneous disorder Neurological & neuromuscular disorder 588 Psychiatric disorder 3 Renal disorder 35 Respiratory disorder 25 Skeletal & craniofacial disorder 72 Skin disorder 46

High probability to encounter a genetic disorder

The neurological history

- Age, sex, handedness, occupation
- Present complain
- Neurological screening questions
- Past medical history
- Drug history
- Social history

The neurological history

- Age, sex, handedness, occupation
- Present complaint
- Neurological screening questions
- Past medical history
- Drug history

Social history

Family history Solve differential diagnosis Understand aetiology Avoid unnecessary investigations

Genetics?

- Patients' query
- Knowledge
 - Media
 - Internet
- Risk for relatives to have the same disorder?
- Examination delivers genetic diagnosis (not only DNA testing)

http://www.oup.com

http://www.oculist.net

http://www.oup.com

http://healthlineinfo.com/

http://radiology.rsna.org

http://radiology.rsna.org

Plan

- Neurogenetic encounter
- Genetic "counselling"
- How to proceed
- Choice of a genetic testing
- Interpretation and explanation of findings
- Risk explanation

Aims of genetic counselling (EuroGentest Network of Excellence)

- Understand the medical facts of the disorder
- Appreciate how heredity contributes to the disorder and the risk of recurrence in specified relatives
- Understand the options for dealing with the risk of recurrence
- Use this information to make choices in adjustments

Counsellor

- Appropriate training and knowledge
 - genetic aspects of the disease
 - mode of inheritance
 - epidemiological aspects
 - specific features (neurological and general)
 - age at onset
 - course
 - phenotypical presentation
 - possibilities of treatment

Counselee

- Autonomy
 - decision taking
 - searching information
 - other aspects of the interaction
 - decision to know or not to know
 - Respected also by relatives

Consent

- Expression of the autonomy in taking decision
- Continuously assessed
- Informal way
- Observe knowledge reception
- Finally (before blood sampling for genetic test) in written form

Genetic Counselling

- Non directive, patient-family oriented approach
- Take time to explain
- Confidentiality
- Pitfalls!

"Genetic testing" Issues and concerns

- Psychological distress
- Problems with disclosure to the relatives
 - Their own risk
 - Proof of carrier status in an AD disorder
 - Paternity?
- Confidentiality
 - information about genetic result is privileged
 - Disclosure only upon specific consent
- Potential of discrimination

Types of genetic testing situations

- Diagnostic testing
- Pre-symptomatic testing
- Gene carrier testing
- Prenatal testing
- Preimplantation genetic diagnosis
- Research tests
- Genetic association/Susceptibility testing
- Pharmacogenetic testing

Types of genetic testing situations

- Diagnostic testing
- Pre-symptomatic testing
- Gene carrier testing
- Prenatal testing
- Preimplantation genetic diagnosis
- Research tests
- Genetic association/Susceptibility testing
- Pharmacogenetic testing

"Genetic testing" Legal aspects

810.12

Bundesgesetz über genetische Untersuchungen beim Menschen (GUMG)

Plan

- Neurogenetic encounter
- Genetic "counselling"
- How to proceed
- Choice of a genetic testing
- Interpretation and explanation of findings
- Risk explanation

General approach in a case of possible neurogenetic disorder

- Thorough clinical assessment
 - History
 - Family history
 - If possible also taken directly from family members
 - Examination
 - neurological
 - cognitive testing
 - psychiatric evaluation
 - internal

Difficulties in the interpretation of a pedigree

- Phenocopies
- Variable penetrance
- Phenotypical variation
- Wrong paternity
- Inheritance from both parents

General approach in a case of possible neurogenetic disorder

- Thorough clinical assessment
 - History
 - Family history
 - If possible also taken directly from family members
 - Examination
 - neurological
 - cognitive testing
 - psychiatric evaluation
 - internal

General approach in a case of possible neurogenetic disorder

- Targeted laboratory evaluation
 - According to differential diagnostic equation
- Imaging
- Neurophysiological investigations
- Evaluation of genetic testing
 - Clear hypothesis
 - Availability
 - costs
 - Consequences for management

Plan

- Neurogenetic encounter
- Genetic "counselling"
- How to proceed
- Choice of a genetic testing
- Interpretation and explanation of findings
- Risk explanation

The choice of a genetic test

- Phenotype
 - Age at onset
 - Course
 - Symptoms
 - Signs
 - Additional investigations
- Family history
 - Pedigree
 - Phenotype
- Prevalence
 - Disorder
 - Gene mutation
 - Regional Ethnic differences
- Test resources
 - Cost
 - Availability

Analyse information

European Journal of Neurology 2009, 16: 777-785

doi:10.1111/j.1468-1331.2009.02646.x

EFNS GUIDELINES/CME ARTICLE

EFNS guidelines on the molecular diagnosis of neurogenetic disorders: general issues, Huntington's disease, Parkinson's disease and dystonias

|--|

doi:10.1111/j.1468-1331.2009.02873.x

EFNS GUIDELINES/CME ARTICLE

EFNS guidelines on the molecular diagnosis of ataxias and spastic paraplegias

European Journal of Neurology 2010

doi:10.1111/j.1468-1331.2010.02985.x

EFNS GUIDELINES

EFNS guidelines on the molecular diagnosis of channelopathies, epilepsies, migraine, stroke, and dementias

European Journal of Neurology 2009, 16: 1255-1264 EFNS GUIDELINES/CME ARTICLE doi:10.1111/j.1468-1331.2009.02811.x

EFNS guidelines on the molecular diagnosis of mitochondrial disorders

European Journal of Neurology 2010

doi:10.1111/j.1468-1331.2010.03069.x

EFNS GUIDELINES

EFNS guidelines for the molecular diagnosis of neurogenetic disorders: motoneuron, peripheral nerve and muscle disorders

Information sources

- http://www.genetests.org/
- <u>http://www.omim.org/</u>
- <u>http://www.orpha.net/consor/cgi-bin/index.php</u>
- <u>http://www.journalofneurogenetics.org</u>

Myotonic dystrophy

- Prevalence: 1 / 8000
- Progressive weakness atrophy
- Myotonia
- AV block
- Cardiomyopathy
- Cataract
- Testicular failure
- Sleep disorder- Fatigue
- Neuropsychological changes

Myotonic dystrophy

- Prevalence: 1 / 8000
- Progressive weakness atrophy
- Myotonia
- AV block
- Cardiomyopathy
- Cataract
- Testicular failure
- Sleep disorder- Fatigue
- Neuropsychological changes

CGT repeat expansion in the myotonin protein kinase gene DMPK

Simple diagnostic (not psychological) situation

- Patient with chorea, cognitive impairment, psychiatric disturbances
- Positive family history with AD inheritence
- Test HD: count CAG repeats on HD gene

CAG repeat numbers

non affected		affected	
normal	intermediate	decreased penetrance	full penetrance
up to 26 repeats	26-35 repeats	36-39 repeats	More than 40 repeats

PD: more complicated

Table 2 Molecular diagnosis of Parkinson's disease

Disease	Locus	Inheritance	Position	Gene product
Familial Parkinson disease, dominant	PARK1/4	AD	4q21	alpha-Synuclein
	PARK8	AD	12p12	LRRK2, Dardarin
Familial Parkinson	PARK2	AR	6q25-27	Parkin
disease, recessive	PARK6	AR	1p33	PINK1
	PARK7	AD	1p34	DJ-1
Familial parkinsonism, other	PARK9	AR	1p36	ATP13A2
	GBA	AD	1q21	Glucocerebrosidase

PD: EFNS guidelines

- In Europeans, PD with AD inheritance:
 - Test LRRK2
- Ashkenazim or North African Arabs
 - Test LRRK2 G2019S
- PD with AR inheritance:
 - Test parkin, PINK1, DJ-1
- Sporadic PD with very early onset (<35 years)
 - Test parkin, PINK1, DJ-1

PD: Mutations in 2 genes

Hereditary spastic paraplegia

- 56 genetically distinct forms
- some with many of mutations at different locations

Hereditary spastic paraplegia

- 56 genetically distinct forms
- some of many of mutations at different locations
 - Inheritance?
 - additional signs?
 - Pure HSP
 - Neuropathy?
 - X-linked, early onset, with matter changes
 - AR
 - sporadic progressive no other cause

Hereditary spastic paraplegia

Pure HSP point mutations in the SPAST gene (SPG4), in 50% multiplex ligation-dependent probe amplification assay (MLPA sequencing of atlastin (SPG3)

Neuropathy? REEP1 and KIF5A

X-linked, early onset, with matter changes

L1-CAM (SPG1) and PLP (SPG2)

AR SPG11 thin corpus callosum SPG15 cerebellar features SPG7

sporadic progressive with no other cause

SPG4 mutations by MLPA

Sequencing of SPG7

Plan

- Neurogenetic encounter
- Genetic "counselling"
- How to proceed
- Choice of a genetic testing
- Interpretation and explanation of findings
- Risk explanation

- Mutations in single gene causing one defined known disease
- Mutations causing newly recognised complex phenotypes
- Similar phenotypes in mutations of several genes
- Mutations associated with several disorders
- Phenotypic variability
- Environmental and genetic modifiers

- Mutations in single gene causing one defined known disease
- Mutations causing newly recognised complex phenotypes
- Similar ph
- Mutation:
- Phenotyp
- Environm

- DNA methyltransferase gene mutations
 - sensory neuropathy, dementia, and hearing loss
- ABHD7 gene mutations:
 - PHARC (peripheral neuropathy, hearing loss, ataxia, retinitis pigmentosa, cataract)
- repeat in the C90RF72 gene
 - frontotemporaldementia/amyotrophic lateral sclerosis

- Mutations in sing known disease
- Mutations causing phenotypes

spastic paraplegia 56 genetically defined forms Present in other complex disorders

• Similar phenotypes in mutations of several genes

	N /utationa accord	
	IVIULATIONS associa	ataxia
	Phenotypic variab	36 genetically defined forms
•	Environmental an	Present in other complex disorders

Cardiomyopathy, dilated, 1A

115200

	Charcot-Marie-Tooth disease, type 2B1	605588
 Mutations in s 	Emery-Dreifuss muscular dystrophy 2, AD	181350
known disease	Emery-Dreifuss muscular dystrophy 3, AR	<u>181350</u>
_amin A/C is cau	Heart-hand syndrome, Slovenian type	<u>610140</u>
nhanotypas	Hutchinson-Gilford progeria	<u>176670</u>
prictiotypes	Lipodystrophy, familial partial, 2	151660
• Similar pheno [*]	Malouf syndrome	212112
	Mandibuloacral dysplasia	248370
	Muscular dystrophy, congenital	<u>613205</u>
	Muscular dystrophy, limb-girdle, type 1B	159001

• Mutations associated with several disorders

- Mutations in single gene causing one defined known disease
- Mutations causing newly recognised complex phenotypes
- Similar phenotypes in mutations of several genes
- Mutations associated with several disorders
- Phenotypic variability
- Environmental and genetic modifiers

Plan

- Neurogenetic encounter
- Genetic "counselling"
- How to proceed
- Choice of a genetic testing
- Interpretation and explanation of findings
- Risk explanation

Alzheimer genes

- Monogenetic causation
 - Beta amyloid
 - Preselinin 1 and 2
 - Tau

Young onset Clear family history

• Association with specific genetic polymorphisms

Linkage /// Association

- Linkage study
 - Physical gene localisation
 - Examination of informative families
- Genetic association study
 - Statistical occurrence of a particular allele with a disease
 - Comparison of a group of patient with a control group

The APOE gene

3 common sequence variants

- ε3 112 Cys 158Arg 75% Caucasians
- ε4 112 Arg 158Arg 15% Caucasians
- ε2 112 Cys 158Cys 10% Caucasians

APOE polymorphisms in AD

- ϵ 4 0% of patients with AD (C: 15%)
- ϵ 2% of patients with AD (C: 10%)
- $\epsilon 4/\epsilon 4$ age at onset: <70 years $\epsilon 2/\epsilon 3$ age at onset: >90 years

Case report

- History
 - Muscle weakness and pain since childhood
 - Anxiety
 - Burnout syndrome
- Present complains
 - fluctuating tremor
 - panic attacks
 - Worsening of the muscle symptoms
 - Exercise intolerance, myalgia, weakness
- Neurological investigations
- Dystonia fingers right
- Sensory deficits right

- Family History
 - Parkinson
 - Tremor
 - Dementia

- Sudden death due to cardiac arrhythmia
- Epilepsy
- Myalgia
- Anxiety disorder
- Depressions

Case report

- Genetics
- Mitochondrial genome
 - Uncle
 - 3-6 kpb deletion
 - 24-50%
 - Father
 - 5-10 kpb deletion
 - 78-95%

Plan

- Neurogenetic encounter
- Genetic "counselling"
- How to proceed
- Choice of a genetic testing
- Interpretation and explanation of findings
- Risk explanation