SYLLABUS

Marrakesh, Morocco, November 12-17, 2011

XXth WORLD CONGRESS OF NEUROLOGY

NEUROPATHIES

Chairperson: Jean-Marc Léger, France

GBS AND CIDP Richard A.C. Hughes, *UK*

INHERITED NEUROPATHIES
Michael Shy, USA

PARAPROTEINEMIC NEUROPATHIES Jean-Marc Léger, France

16:00-16:30 Coffee Break

GBS and CIDP

Richard Hughes Teaching course WCN Marrakesh 2011

History

- 1916 Guillain, Barré and Strohl
- 1956 (Miller)Fisher syndrome
- 1958 Austin: steroid responsive neuropathy
- 1975 Dyck; Prineas: CIDP
- 1985 Plasma exchange
- 1988 Antibodies to gangliosides
- 1991 Acute motor axonal neuropathy
- 1992 Intravenous immunoglobulin

GBS subtypes

- Acute inflammatory demyelinating polyradiculoneuropathy
- Acute motor axonal neuropathy
- Acute motor and sensory axonal neuropathy
- Fisher syndrome
- Formes frustes

Differential diagnosis 1

- Brain stem stroke or encephalitis
- Poliomyelitis
- Acute myelopathy
- Myasthenia, botulism or toxins
- Muscle disease and hypokalaemia

Differential diagnosis 2

- Peripheral neuropathy
 - Toxic
 - Drugs
 - Organophosphates, heavy metals
 - Diphtheritic neuropathy
 - Porphyria
 - Alcohol
 - Vasculitis
 - Critical illness
 - Lymphoma
 - GBS

GBS supportive treatment

Hughes et al 2005 Arch Neurol 62 1192

- Heparin; support stockings
- Monitoring vital capacity; ventilation
- · Percutaneous tracheostomy
- · Nutrition and hydration
- Percutaneous endoscopic gastrostomy
- Bladder and bowel care
- Pain control
- Physiotherapy
- Psychological support
- Rehabilitation

Practice parameter: immunotherapy for GBS Report of Quality Standards Subcommittee of AAN

Hughes et al 2003 Neurology 61 736

- PE recommended for non-ambulant adult patients within
 weeks and considered for ambulant patients within 2
 weeks
- 2) IVIg recommended for non-ambulant adult patients within 2 or possibly 4 weeks. PE and IVIg equivalent.
- 3) Corticosteroids not recommended
- 4) Sequential treatment with PE followed by IVIg, or immunoabsorption followed by IVIg not recommended
- 5) PE and IVIg are options for children with severe GBS

9

5% die

15% dead or disabled after a year

80% persistent fatigue

www.gbs.org.uk

10

GBS rehabilitation

Hughes et al 2005 Arch Neurol 62 1192

- Pain control
- Physiotherapy
- Psychological support
- Fatigue
- Immunisations: care

Note: improvement will continue for at least 3 years

Subacute inflammatory demyelinating polyradiculoneuropathy (SIDP)

Nadir 4 – 8 weeks

Frequent preceding infection

Demyelinating neurophysiology

No other cause

CSF protein raised in 19/21

Macrophage associated demyelination

Complete recovery in 18/23 with no treatment or steroids

Hughes R et al. Arch Neurol 1992 49 612-16 7 cases
Oh SJ et al. Neurology 2003 61 1507-12 16 cases

CIDP definition

European Journal of Neurobgy 2010, 17: 356-363 EFNS TASK FORCE/CME ARTICLE

Viala et al 2010 JPNS 15 50

Typical

• • • Transcription of all extremities, developing over at least 2 months; cranial nerves may be affected; and absent or reduced tendon reflexes in all extremities

Atypical

- Distal (DADS)
- Pure motor

10%

- Pure sensory

Multifocal (Lewis-Sumner syndrome)

- Focal
- CNS involvement

CIDP pathology: active lesions

Pathogenesis

- Inflammatory (T cell) pathology
- Response to immunotherapy
- Defects of
 - T cell regulatory function
 - FcγRIIB (inhibitory) expression on B cells
- Animal models caused by T cell autoimmunity
- But
 - Antibodies to PO or gangliosides in only a minority
 - Little evidence of T cell response to myelin proteins

Differential diagnosis

- Chronic idiopathic axonal neuropathy
- Paraproteinaemic demyelinating neuropathy
- Multifocal motor neuropathy
- Lyme disease
- Vasculitic neuropathy
- Lymphoma
- Amyloid neuropathy
- Hereditary sensory and motor neuropathy

EFNS/PNS Guideline on CIDP Recommendations

van den Bergh 2010 EJN 17 356 or www.efns.org

• sensory and motor CIDP: IVIg* or steroids

* 2 courses needed to assess response *regular trials of withdrawal of treatment

- pure motor CIDP: IVIg
- if IVIg and steroids ineffective: PE
- if response inadequate consider
 - combination treatments
 - immunosuppressant

17

Lewis-Sumner syndrome

or Multifocal acquired demyelinating sensory and motor neuropathy (MADSAM)

Treatment

11 patients Saperstein et al 1999 Muscle and Nerve 22 560

5/9 responded to IVIg

3/6 responded to corticosteroids

23 patients Viola et al 2004 Brain 127 2010

71% chronic progressive 29% rel-remitting

54% responded to IVIg

33% to steroids

73% to one or other

•		
,		
•		
•		
•		
•		

Multifocal motor neuropathy

Diagnostic criteria

van Schaik et al. 2006 JPNS

Core criteria (both must be present)

- Slowly progressive or stepwise progressive, asymmetric limb weakness, or motor involvement of => 2 nerves, for > 1 month
- No objective sensory abnormality except minor VS in legs

Supportive clinical criteria

- Predominant upper limb involvement
- Decreased or absent tendon reflexes in affected limb
- Absence of cranial nerve involvement
- Cramps and fasciculations in affected limb

Neurophysiological criteria

Electrophysiological criteria	for
conduction block	

Definite*

CMAP prox/dist area reduction > 50% but dist CMAP must be >20% LLN and increase of prox CMAP duration < 30%

Probable*

CMAP prox/dist area reduction > 30% with increase of prox CMAP duration < 30%

or

CMAP area reduction > 50% with prox CMAP duration >30%

Normal sensory nerve conduction in upper limb segments

*Evidence for CB must be found at sites distinct from common entrapment or compression syndromes

Multifocal motor neuropathy Treatment

- IVIg effective in 80%
- Short-term
- High doses for sustained response
 - 2.0 g/kg per month vucic et al 2004 Neurology
- Steroids can worsen

•	

References

- Cochrane reviews (GBS, CIDP and MMN) www.thecochranelibrary.com
- EFNS/PNS guidelines (CIDP and MMN) www.efns.org
- Hughes et al 2005 Supportive Care for GBS Arch Neurol 62: 1194
- Vallat et al 2010 CIDP Lancet Neurology 9:402
- van Doorn et al 2008 Clinical features, pathogenesis, and treatment of GBS. Lancet Neurol 7: 939

_			
-			
-			
-			
-			

An update on the management of paraproteinaemic neuropathies

Jean-Marc Léger Referal Center for Neuromuscular Diseases Hôpital de la Salpêtrière. Paris.

Dysimmune neuropathies

- Acute: Guillain-Barré syndrome
- Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP)
- Multifocal motor neuropathy (MMN)
- Polyneuropathy associated with IgM anti-MAG monoclonal gammopathy
- Polyneuropathy associated with IgG/IgA MG?
- Chronic idiopathic axonal polyneuropathy?

Lymphoproliferative diseases associated with neuropathy

Myelomas IgG/IgA
 Solitary Plasmocytoma IgG/IgA
 POEMS syndrome IgG/IgA
 Waldenström's disease IgM
 Malignant Lymphoma IgM/IgG

Cryoglobulinemia

• Primary Amyloidosis IgG

Journal of the Peripheral Nervous System 11:9-19 (2006)

EFNS/PNS PDN GUIDELINES

European Federation of Neurological Societies/Peripheral Nerve Society Guideline* on management of paraproteinemic demyelinating neuropathies. Report of a joint task force of the European Federation of Neurological Societies and the Peripheral Nerve Society

Joint Task Force of the EFNS and the PNS†

Prevalence of MGUS

- 3.4% in individuals > 50 years
- Increasing prevalence matched to age
- 6.6% in individuals > 80 years
- Respectively higher prevalence: IgM, IgG, then IgA (Kyle et al. 1978)

•	

Natural history of MGUS (Kyle et al. 2004: n = 1384)

- Diagnostic between 1960 et 1994
- Mean age at inclusion: 72 y
- Mean follow-up: 15.4 y (0-35)
- Overall risk for developing LD: 1% per year
- 10% at 10 y, 21% at 20 y, 26% at 25 y
- Higher relative risk for WD (46), then myeloma (25), amyloidosis (8.4), lymphoma (2.4)

Predictive factors for evolution to malignant LD

- Isotypes IgA and IgM vs IgG
- Monoclonal component > 15g/L
- Degree of plasmocytosis at bone biopsy
- Light chain λ vs κ

Polyneuropathy associated with IgM anti-MAG MGUS: DADS (distal acquired demyelinating symmetric) neuropathy

- Chronic, symmetric, predominantly sensory, ataxic polyneuropathy
- Generalized areflexia
- Slowly progressive course
- Reduced MNCV with disproportionately raised distal latencies

Demyelinating neuropathy associated with IgM MGUS: auto-antibodies

- The paraprotein has an activity directed to myelin-associated-glycoprotein (MAG) at significant titres in 50-60% of cases
- It has also an activity directed to glycolipids sharing a common oligosaccharidic epitope with MAG:

SGPG : sulfate glucuronyl paragloboside SGLPG : sulfate glucuronyl lactosaminyl paragloboside

CANOMAD

(Willison et al, Brain, 2001)

- Chronic Ataxic Neuropathy, Ophthalmoplegia, monoclonal M protein, cold agglutinins and Anti-Diasalosyl antibodies
- Relapsing predominantly sensory neuropathy
- Ophthalmoplegia and bulbar signs
- IgM directed to specific ganglosides: GD1b, GT1b, GQ1b, GD3....with presence of cold agglutinins in 50% of cases

DADS neuropathy associated with anti-MAG IgM MGUS: therapy

- Chlorambucil (Oksenhendler et al. 1995)(class III)
- High-dose IVIg (Comi et al. 2002) (class II)
- Rituximab (Pestronk et al. 2003) (class III) (Renaud et al. 2003) (class IV)
- Oral fludarabine for monthly 6 cycles of 5 days (Niermeijer et al. 2006) (Class III)
- Monthly oral CTx:500mg/d x 4 + oral prednisone: 60mg/d x 5 (Niermeijer et al. 2007) (class II)

Placebo-controlled trial of rituximab in anti-MAG neuropathy. Dalakas et al. 2009

- 26 included patients with anti-MAG neuropathy:
 13 receiving 4 weekly infusions of 375 mg/m2 and
 13 placebo
- At 8 months, by intention to treat, 4 of 13 treated patients improved by ≥ 1 INCAT score compared with 0 of 13 patients taking placebo (p = 0.096).
- The most improved patients were those with high anti-MAG titers and most severe sensory deficits at baseline

RIMAG trial: design

- Double-blind randomised controlled trial
- · Parallel group
- 54 participants
- Eight French and one Swiss centres
- Patients randomised to receive 4 weekly infusions of 375mg/m² rituximab or placebo

Primary outcome: Protocol Definition

- The main analysis will use the delta change in INCAT sensory sumscore (ISS)
- ISS measured at baseline will be compared to ISS at month 12

Final Analysis Primary outcome (1)

	Variables	Placebo (n=27)	Rituximab (n=20)	p-value
Between	Mean Variation of ISS ± sd	1.0 ± 2.8	1.3 ± 3.0	0.68
day 0 and	ISS improvement ≥4, n (%)	6 (22.2)	4 (20.0)	1.00
month 12	Mean Variation of ISS leg ± sd	0.2 ± 1.3	1.0 ± 2.0	0.15
Between	Mean Variation of ISS score ± sd	1.1 ± 3.3	1.6 ± 2.8	0.60
day 0 and month 9	ISS improvement ≥4, n (%)	5 (18.5)	4 (22.2)*	1.00

^{*} total n=18 due to missing value

INCAT score. Self-evaluation scale Descriptive statistics

	Variables	Placebo (n=27)	Rituximab (n=20)	p-value
Between day 0 and month 12	Mean Variation of Hugues score ± sd	- 0.2 ± 0.7	0.2 ± 1.3	0.22
	Hugues score improvement ≥2, n (%)	0 (0.0)	4 (20.0)	0.03

Variables	Placebo	Rituximab	p value	
Mean Self Evaluation Score at M12 ± sd	14.8 ± 4.3 (n=25)	12.0 ± 5.5 (n=17)	0.07	
Self Evaluation Scale at M12	(n=25)	(n=19)		
Improvement	1 (4.0)	5 (26.3)	0.02	
Stabilization	9 (36.0)	10 (52.6)		
No effect	15 (60.0)	4 (21.0)		