A protein called alpha-synuclein plays a major role in Parkinson’s disease as well as other brain disorders. In these conditions, the protein misfolds and aggregates (collects and sticks together) to create clumps called Lewy bodies within cells. Lewy bodies are thought to be toxic to certain neurons in the brain.

Parkinson’s disease and another disease involving alpha-synuclein, called multiple system atrophy (MSA), are particularly difficult to tell apart based on early symptoms. While there is no cure for either, the two diseases require different treatments to keep people with the conditions healthy as long as possible.

Researchers led by Dr. Claudio Soto from UTHealth in Houston used a test called protein misfolding cyclic amplification (PMCA) to detect small amounts of alpha-synuclein aggregates in cerebrospinal fluid (CSF). PMCA works by exposing regular alpha-synuclein protein to samples from patients that might contain misfolded alpha-synuclein. If present, the misfolded protein amplifies itself by misfolding regular alpha-synuclein. This copying process allows detection and analysis of the misfolded proteins, which aggregate and assemble into thin, twisted fibrils. Such fibrils form a large component of Lewy bodies.

By amplifying the abnormal [alpha-synuclein] aggregates, we can detect with high efficiency which disease the patient has. This has huge implications both for accurate diagnosis and clinical care of the patient, and the development of new specific treatments for both diseases.
Dr. Claudio Soto


View Source Article